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Automatic Speech Recognition (ASR) is an artificial perception problem: the input 
is raw, continuous patterns (no symbols!) and the desired output, which may be 
words, phonemes, meaning or text, is symbolic. The most successful approach to 
automatic speech recognition is based on stochastic models. A stochastic model is 
a theoretical system whose internal state and output undergo a series of transfor­
mations governed by probabilistic laws [1]. In the application to speech recognition 
the unknown patterns of sound are treated as if they were outputs of a stochastic 
system [18,2]. Information about the classes of patterns is encoded as the structure 
of these "laws" and the probabilities that govern their operation. The most popular 
type of SM for ASR is also known as a "hidden Markov model." 

There are several reasons why the SM approach has been so successful for ASR. 
It can describe the shape of the spectrum, and has a principled way of describ­
ing temporal order, together with variability of both. It is compatible with the 
hierarchical nature of speech structure [20,18,4], there are powerful algorithms for 
decoding with respect to the model (recognition), and for adapting the model to fit 
significant amounts of example data (learning). Firm theoretical (mathematical) 
foundations enable extensions to be accommodated smoothly (e.g. [3]). 

There are many deficiencies however. In a typical system the speech signal is first 
described as a sequence of acoustic vectors (spectrum cross sections or equivalent) 
at a rate of say 100 per second. The pattern is assumed to consist of a sequence of 
segments corresponding to discrete states of the model. In each segment the acoustic 
vectors are drawn from a distribution characteristic of the state, but otherwise 
independent of one another and of the states before and after. In some systems there 
is a controlled relationship between states and the phonemes or phones of speech 
science, but most of the properties and notions which speech scientists assume are 
importan t are ignored. 

Most SM approaches are also deficient at a pattern-recognition theory level: The 
parameters of the models are usually adj usted (using the Baum-Welch re-estimation 
method [5,2]) so as to maximise the likelihood of the data given the model. This 
is the right thing to do if the form of the model is actually appropriate for the 
data, but if not the parameter-optimisation method needs to be concerned with 
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discrimination between classes (phonemes, words, meanings, ... ) [28,29,30]. 

A HMM recognition algorithm is designed to find the best explanation of the input in 
terms of the model. It tracks scores for all plausible current states of the generator 
and throws away explanations which lead to a current state for which there is a 
better explanation (Bellman's Dynamic Programming) . It may also throwaway 
explanations which lead to a current state much worse than the best current state 
(score pruning), producing a Beam Search method. (It is important to keep many 
hypotheses in hand, particularly when the current input is ambiguous.) 

Connectionist (or "Neural Network") approaches start with a strong pre-conception 
of the types of process to be used. They can claim some legitimacy by reference 
to new (or renewed) theories of cognitive processing. The actual mechanisms used 
are usually simpler than those of the SM methods, but the mathematical theory 
(of what can be learnt or computed for instance) is more difficult, particularly for 
structures which have been proposed for dealing with temporal structure. 

One of the dreams for connectionist approaches to speech is a network whose inputs 
accept the speech data as it arrives, it would have an internal state which contains all 
necessary information about the past input, and the output would be as accurate 
and early as it could be. The training of networks with their own dynamics is 
particularly difficult, especially when we are unable to specify what the internal state 
should be. Some are working on methods for training the fixed points of continuous­
valued recurrent non-linear networks [15,16,27] . Prager [6] has attempted to train 
various types of network in a full state-feedback arrangement. Watrous [9] limits 
his recurrent connections to self-loops on hidden and output units, but even so the 
theory of such recursive non-linear filters is formidable. 

At the other extreme are systems which treat a whole time-frequency-amplitude 
array (resulting from initial acoustic analysis) as the input to a network, and require 
a label as output. For example, the performance that Peeling et al. [7] report 
on multi-speaker small-vocabulary isolated word recognition tasks approach those 
of the best HMM techniques available on the same data. Invariance to temporal 
position was trained into the network by presenting the patterns at random positions 
in a fixed time-window. Waibel et al. [8] use a powerful compromise arrangement 
which can be thought of either as the replication of smaller networks across the time­
window (a time-spread network [19]) or as a single small network with internal delay 
lines (a Time-Delay Neural Network [8]). There are no recurrent links except for 
trivial ones at the output, so training (using Backpropagation) is no great problem. 
We may think of this as a finite-impulse-response non-linear filter. Reported results 
on consonant discrimination are encouraging, and better than those of a HMM 
system on the same data. The system is insensitive to position by virtue of its 
construction. 

Kohonen has constructed and demonstrated large vocabulary isolated word [12] 
and unrestricted vocabulary continuous speech transcription [13J systems which are 
inspired by neural network ideas, but implemented as algorithms more suitable for 
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current programmed digital signal processor and CPU chips. Kohonen's phonotopic 
map technique can be thought of as an unsupervised adaptive quantiser constrained 
to put its reference points in a non-linear low-dimensional sub-space. His learning 
vector quantiser technique used for initial labeling combines the advantages of the 
classic nearest-neighbor method and discriminant training. 

Among other types of network which have been applied to speech we must mention 
an interesting class based not on correlations with weight vectors (dot-product) but 
on distances from reference points. Radial Basis Function theory [22] was developed 
for multi-dimensional interpolation, and was shown by Broomhead and Lowe [23] 
to be suitable for many of the jobs that feed-forward networks are used for. The 
advantage is that it is not difficult to find useful positions for the reference points 
which define the first, non-linear, transformation. If this is followed by a linear 
output transformation then the weights can be found by methods which are fast and 
straightforward. The reference points can be adapted using methods based on back­
propagation. Related methods include potential functions [24], Kernel methods [25] 
and the modified Kanerva network [26]. 

There is much to be gained form a careful comparison of the theory of stochastic 
model and neural network approaches to speech recognition. If a NN is to per­
form speech decoding in a way anything like a SM algorithm it will have a state 
which is not just one of the states of the hypothetical generative model; the state 
must include information about the distribution of possible generator states given 
the pattern so far, and the state transition function must update this distribution 
depending on the current speech input. It is not clear whether such an internal rep­
resentation and behavior can be 'learned' from scratch by an otherwise unstructured 
recurrent network. 

Stochastic model based algorithms seem to have the edge at present for dealing with 
temporal sequences. Discrimination-based training inspired by NN techniques may 
make a significant difference in performance. 

It would seem that the area where NNs have most to offer is in finding non-linear 
transformations of the data which take us to a space (perhaps related to formant or 
articulatory parameters) where comparisons are more relevant to phonetic decisions 
than purely auditory ones (e.g., [17,10,11]). The resulting transformation could also 
be viewed as a set of 'feature detectors'. Or perhaps the NN should deliver posterior 
probabilities of the states of a SM directly [14]. 

The art of applying a stochastic model or neural network approach is to choose 
a class of models or networks which is realistic enough to be likely to be able to 
capture the distinctions (between speech sounds or words for instance) and yet 
have a structure which makes it amenable to algorithms for building the detail of 
the models based on examples, and for interpreting particular unknown patterns. 
Future systems will need to exploit the regularities described by phonetics, to allow 
the construction of high-performance systems with large vocabularies, and their 
adaptation to the characteristics of each new user. 
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There is no doubt that the Stochastic model based methods work best at present, 
but current systems are generally far inferior to humans even in situations where the 
usefulness of higher-level processing in minimal. I predict that the next generation 
of ASR systems will be based on a combination of connectionist and SM theory and 
techniques, with mainstream speech knowledge used in a rather soft way to decide 
the structure. It should not be long before the distinction I have been making will 
disappear [29]. 
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