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ABSTRACT 

MURPHY is a vision-based kinematic controller and path planner 
based on a connectionist architecture, and implemented with a video 
camera and Rhino XR-series robot arm. Imitative of the layout of sen­
sory and motor maps in cerebral cortex, MURPHY'S internal representa­
tions consist of four coarse-coded populations of simple units represent­
ing both static and dynamic aspects of the sensory-motor environment. 
In previously reported work [4], MURPHY first learned a direct kinematic 
model of his camera-arm system during a period of extended practice, 
and then used this "mental model" to heuristically guide his hand to 
unobstructed visual targets. MURPHY has since been extended in two 
ways: First, he now learns the inverse differential-kinematics of his arm 
in addition to ordinary direct kinematics, which allows him to push his 
hand directly towards a visual target without the need for search. Sec­
ondly, he now deals with the much more difficult problem of reaching in 
the presence of obstacles. 

INTRODUCTION 

Visual guidance of a multi-link arm through a cluttered workspace is known to be 
an extremely difficult computational problem. Classical approaches in the field of 
robotics have typically broken the problem into pieces of manageable size, including 
modules for direct and inverse kinematics and dynamics [7], along with a variety 
of highly complex algorithms for motion planning in the configuration space of a 
multi-link arm (e.g. [3]). Workers in the field of robotics have rarely (until recently) 
emphasized neural plausibility at the level of representation and algorithm, opting 
instead for explicit mathematical computations or complex, multi-stage algorithms 
using general-purpose data structures. More peculiarly, very little emphasis has 
been placed on full use of the visual channel for robot control, other than as a 
source of target shape or coordinates. 
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Figure 1: MURPHY's Connectionist Architecture. Four interconnected populations 
of neuron-like units implement a variety of sensory-motor mappings. 

Much has been learned of the neural substrate for vision-guided limb control 
in humans and non-human primates (see [2] for review), albeit at a level too far 
removed from concrete algorithmic specification to be of direct engineering utility. 
Nonetheless, a number of general principles of cortical organization have inspired 
the current approach to vision-based kinematic learning and motion-planning. MUR­

PHY'S connectionist architecture has been based on the observation that a surpris­
ingly large fraction of the vertebrate brain is devoted to the explicit representation 
of the animal's sensory and motor state [6]. During normal behavior, each of these 
neural representations carries behaviorally-relevant state information, some yoked 
to the sensory-epithelia, others to t.he motor system. The effect is a rich set of 
online associative learning opportunities. Moreover, the visual modality is by far 
the dominant in the primate brain by measures of sheer real-estate, including a 
number of areas that are known to be concerned with the representation of limb 
control in immediate extrapersonal space [2], suggesting that visual processing may 
overshadow what has usually been perceived as primarily a motor process. 

MURPHY's ORGANIZATION 

In the interests of space, we ptesent here a highly reduced description of MURPHY'S 

organization; the reader is referred to [5] for a much more comprehensive treat-
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ment, including a lengthy discussion of the relevance of MURPHY'S structure and 
function to the psychology, motor-physiology, and neural-basis for visually-guided 
limb control in primates. 

The Physical Setup 

MURPHY's physical setup consists of a 512 x 512 JVC video camera pointed at a 
Rhino XR-3 robotic arm, whose wrist, elbow, and shoulder rotate freely in the 
image plane of the camera. White spots are stuck to the arm in convenient places; 
when the image is thresholded, only the white spots appear in the image (see fig. 
2). This arrangement allows continuous control over the complexity of the visual 
image of the arm, which in turn affects computation time during learning. The arm 
is software controllable, with a stepper motor for each joint. Arm dynamics are not 
dealt with in this work. 

The Connectionist Architecture 

MURPHY is currently based on four interconnected populations of neuron-like units 
(fig. 1), encoding both static and dynamic aspects of the sensory-motor environment 
(only two were used in a previous report [4]). Visual Populations. The principal 
sensory population is organized as a rectangular, visuotopically-mapped 64 x 64 
grid of coarsely-tuned visual units, each of which responds when a visual feature 
(such as a white spot on the arm) falls into its receptive field (fig 1, upper left). 
The second population of 24 units encodes the direction of MURPHY'S hand motion 
through the visual field (fig. 1, lower left)-vector magnitude is ignored at present. 
These units are thus "fired" only by the distinct visual image of the hand, but are 
selective for the direction of hand motion through the visual field as MURPHY moves 
his arm in the workspace. Joint Populations. The third population of 273 units 
consists of three subpopulations encoding the static joint configuration; the angle 
of each joint is value-coded individually in a subpopulation dedicated to that joint, 
consisting of units with overlapping triangular receptive fields. (fig. 1, upper right) . 
The fourth and final population of 24 units also consists of three subpopulations, 
each value-coding the velocity of one of the three joints (fig. 1, lower right). 

During both his learning and performance phases to be described in subsequent 
sections, MURPHY is also able to carry out simple sequential operations that are 
driven by a control structure external to his connectionist architecture. 

MURPHY's Kinematics 
For a detailed discussion of the relation between MURPHY'S novel style of kine­
matic representation and those used in other approaches to robot control, see [5]. 
Briefly, in reference to the four unit populations described above, MURPHY'S pri­
mary workhorse is his direct kinematic mapping that relates static joint angles to 
the associated visual image of the arm. This smooth nonlinear mapping comprises 
both the kinematics of the arm and the optical parameters and global geometry of 
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the camera/imaging system, and is learned and represented as a synaptic projec­
tion from the joint-angle to visual-field populations (fig. 1). Post-training, MURPHY 

can assume an arbitrary joint posture "mentally", i.e. by setting up the appropri­
ate pattern of activation on his joint-angle population without allowing the arm to 
move. The learned mapping will then synaptically activate a mental image of the 
arm, in that configuration, on the "post-synaptic" visual-field population. Contem­
plated movements of the arm can thus be evaluated without overt action-this is 
the heart of MURPHY'S mental model. 

MURPHY is also able to learn the inverse differential-kinematics of his arm, a 
mapping which translates a desired direction of motion through the workspace into 
the requisite commands to the joints, allowing MURPHY to guide his hand along 
a desired trajectory through his field of view. This mapping is learned and repre­
sented as a synaptic projection originating from both i) the hand-vector population, 
encoding the desired visual-field direction, and ii) the joint-angle population encod­
ing the current state of the arm, and terminating on the joint-move population, 
which specifies the appropriate pertubation to the joints (fig. 1, see arrows labelled 
"Inverse Jacobian"). In the next section, we describe how this learning takes place. 

HOW MURPHY LEARNS 

As described in [4,5], MURPHY learns by doing. Thus, during an initial training pe­
riod for the direct kinematics, MURPHY steps his arm systematically through a small 
representative sample of the 3.3 billion legal arm configurations (visiting 17,000 
configs. in 5 hours). Each step constitutes a standard connectionist training exam­
ple between his joint-angle and visual-field populations. A novel synaptic learning 
scheme called sigma-pi learning is used for weight modification [4,5], described else­
where in great detail [5]. This scheme essentially treats each post-synaptic sigma-pi 
neuron (see [5]) as an interpolating lookup table of the kind discussed by Albus 
and others [1], rather than as a standard linear threshold unit. Sigma-pi learning 
has been inspired by the physical structure and membrane properties of biological 
neurons, and yields several advantages in performance and simplicity of imple­
mentation for the learning of smooth low-dimensional functions [5]. As an imple­
mentation note, once the sigma-pi units have been appropriately trained, they are 
reimplemented using k-d trees, a much more efficient data-structure for a sequential 
computer (giving a speedup on the order of 50-100). 

MURPHY'S inverse-differential mapping is learned analogously, where each move­
ment of the arm (rather than each state) is used as a training example. Thus, as the 
hand sweeps through the visual field during either physical or mental practice, each 
of the three relevant populations are activated (hand-vector and joint-angle as in­
puts, joint-move as output), acting again as a single input-output training example 
for the learning procedure. 
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Figure 2: Four Visual Representations. The first frame shows the unprocessed 
camera view of MURPHY'S arm. White spots have been stuck to the arm at var­
ious places, such that a thresholded image contains only the white spots. The 
second frame shows the resulting pattern of activation over the 64 x 64 grid of 
coarsely-tuned visual units as driven by the camera. The third frame depicts an 
internally-produced "mental" image of the arm in the same configuration, as driven 
by weighted connections from the joint-angle population. Note that the mental 
image is a sloppy, but highly recognizable approximation to the camera-driven 
trace. The fourth frame shows the mental image generated using k-d trees in the 
place of sigma-pi units. 

MURPHY IN ACTION 

Reaching to Targets 

In a previous report, MURPHY was only able to reach to a visual target by mentally 
flailing his way to the target (i.e. by generating a small random change in joint 
position, evaluating the induced mental image of the arm for proximity to the 
target, and keeping only those moves that reduced this distance), and then moving 
the arm physically in one fell sWQOP [4] . On repeated reaches to the same or similar 
targets, MURPHY was doomed to repeatedly wander his way stupidly and aimlessly 
to the target. Typical trajectories generated in this way can be seen in fig. 3ABC. 
Using only the steps in these three trajectories as training examples for MURPHY'S 

inverse-differential mapping, and then allowing this map to generate "guesses" as 
to the appropriate joint-move at each step, the trajectories for similar targets are 
substantially more direct (fig. 3DEF). 

Avoiding 0 bstacles 

Augmenting this direct search approach with only a few additional visual heuristics, 
MURPHY is able to find circuitous paths through complicated obstacle layouts, even 
when contrived with significant local minima designed to trap the arm (fig. 4). 
For problems of this kind, MURPHY uses a non-replacement, best-first search with 
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Figure 3: Improving with Practice. Frames A, B, and C shows MURPHY's initially 
random search trajectories from start to goal. Joint moves made during these 
three "mental" reaching episodes were used to train MURPHY's inverse differental­
kinematic mapping. Frames D, E, and F show improvement in 3 subsequent reach­
ing trials to nearby targets. 

backtracking on a quantized grid in confuguration space. Mental images of the 
arm were generated in sequence, and evaluated according to several criteria: moves 
that brought the hand closer to the target without collision with obstacles were 
accepted, marked, and pursued; moves that either had been tried before, pushed 
the hand out of the visual field, or resulted in collision were rejected (i.e. popped). 
Collision detection, usually considered a combinatorially expensive operation under 
typical representational assumptions (see [3]), is here represented as a single, parallel 
virtual-machine operation that detects superposition between arbitrary obstacle­
blobs in the visual field and the mental image of the arm. Problems such as that of 
fig. 4 consumed an average of 10 minutes on a Sun 3-160 running inefficiently with 
full graphics. Reaching trials only consistently failed when the grain of quantization 
in MURPHY'S configuration space search prevented him from finding clear paths 
through too-tight spaces. This problem could be (but has not as yet been) attacked 
through hierarchical quantization. 

CONCLUSIONS 

MURPHY'S design has evolved from three schools of thought: ROBOTICS WITHOUT 

EQUATIONS, LEARNING WITHOUT TEACHERS, and BETTER LIVING THROUGH VI­

SION. First, the approach illustrates that neurally-inspired representational struc­
tures can, without equations, implement the core functional-mappings used in robot 
control. The approach also demonstrates that a great deal of useful knowledge can 
be extracted from the environment without need of a teacher, i.e. simply by do-
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Figure 4: Reaching for a target (white cross) in the presence of obstacles (miscel­
laneous other white blobs). MURPHY typically used fewer than 100 internal search 
steps for problems of this approximate difficulty. 
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ing. Thirdly, the approach illustrates that planning can be naturally carried out 
simultaneously in joint and workspace coordinates, that is, can be "administered" in 
joint space, but evaluated using massively parallel visual machine operations. Thus, 
the use of a massively-parallel architecture makes direct heuristic search through 
the configuration space of an arm computationally feasible, since a single plan step 
(i.e. running the direct kinematics and evaluating for progress and/or collision) is 
reduced to 0(1) virtual machine operations. This feature of the approach is that 
which most distinguishes MURPHY from other motion-planning schemes. 

A detailed analysis of the scaling behavior of this approach was carried out in 
[4] suggesting that a real-time, 3-d vision/6 degree-of-freedom super-MURPHY could 
be built with state-of-the-art 1988 hardware, though it must be stressed that the 
competitiveness of the approach depends heavily on massive hardware parallelism 
that is not conveniently available at this time. Questions also remain as to the 
scaling of problem difficulty in the jump to a practical real world systems. 
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