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Abstract 

We develop a. new feedforward neuralnet.work represent.ation of Lipschitz 
functions from [0, p]n into [0,1] ba'3ed on the level sets of the function. We 
show that 

~~ + ~€r + ( 1 + h) (:~) n 

is an upper bound on the number of nodes needed to represent f to within 
uniform error Cr, where L is the Lipschitz constant. \Ve also show that the 
number of bits needed to represent the weights in the network in order to 
achieve this approximation is given by 

o (~2;~r (:~) n) . 
\Ve compare this bound with the [-entropy of the functional class under 
consideration. 

1 INTRODUCTION 

We are concerned with the problem of the number of nodes needed in a feedforward 
neural network in order to represent a fUllction to within a specified accuracy. 
All results to date (e.g. [7,10,15]) have been in the form of existence theorems, 
stating that there does exist a neural network which achieves a certain accuracy of 
representation, but no indication is given of the number of nodes necessary in order 
to achieve this. The two techniques we use are the notion of [-entropy (also known 
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Table 1: Hierarchy of theoretical problems to be solved. 

ABSTRACT 

1. Determination of the general approximation properties of feedforward 
neural networks. (Non-constructive results of the form mentioned 
above [15].) 

2. Explicit constructive approximation theorems for feedforward neural 
networks, indica.ting the number (or bounds on the number) of nodes 
needed to approxima.te a function from a given class to within a given 
accuracy. (This is the subject of the present paper. We are unaware of 
any other work along these lines apart from [6].) 

3. Learning in general. Tha.t is, results on learning that are not dependent 
on the pa.rticular representation chosen. The exciting new results using 
the Vapnik-Chervonenkis dimension [4,9] fit into this category, as do 
studies on the use of Shortest Description Length principles [2]. 

4. Sppcific results on capabilities of learning in a given architecture [11]. 
5. Sppcific algorithms for learning in a specific architecture [14]. 

CONCRETE 

as metric entropy) originally introduced by Kolmogorov [16] and a representation 
of a. function ill t.erms of its level sets, which was used by Arnold [1]. The place of 
the current paper with respect to other works in the literature can be judged from 
table 1. 

We study the question of representing a function f in the class FiPc····'Pn),n, which 
is the space of real valued functions defilled on the n-dimensional closed interval 
X 7=dO, Pi] with a Lipschitz constant L and bounded in absolute value by C. If 
Pi = P for i = 1 .... , 11. WP denote the space Ff'~. The error measure we use is the 
uniform or sup metric: ' 

~ - sup li(x) - f(x)1. 
xE[O,pln 

where f is the approximation of f. 

2 c-ENTROPY OF FUNCTIONAL CLASSES 

(1 ) 

The €-entropy He gives an indication of the number of bits required to represent 
with accuracy € an ar'bitrary function f in some functional class. It is defined as 
the logarithm to base 2 of the number of elements in the smallest €-cover of the 
functional class. Kolmogorov [16] has proved that 

(2) 

where B( n) is a constant which depends only on n. \Ve use this result as a yardstick 
for our neural network representation. A more powerful result is [18, p.86]: 
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Figure 1: Illust.ration of some level sets of a function on R2. 

Theorel11 1 Let p be a non-negative integer and let 0' E (0,1]. Set s = p + 0'. Let 
F:";,C(O) denote the space of real functions f defined on [0, p]ll all of whose partial 
derivatives of order p .satisfy a Lipschitz condition with constant L and index 0', 

and are such that 
n 

for L ki ::; p. (3) 
;=1 

Then for sufficiently small c, 

(4) 

where A(s, n) and B(s, n) are positive constants depending only on sand n. 

We discuss the implication of this below. 

3 A NEURAL NETWORK REPRESENTATION BASED 
ON LEVEL SETS 

We develop a new neura.l network architecture for representing functions from [0, p]n 
onto [0,1] (the restriction of the range to [0,1] is just a conveni~nce and can be 
easily dropped). The basic idea is to represent approximations f of the function 
f in terms of the level sets of f (see figure 1). Then neural networks a.re used to 

- - ~ 
approximate the above sets la(f) of f, where la(f) = {x:f(x) ~ O'} = U.B~al.B(f) 

and la(f) is the O'th level set: IoU) ~ {x:f(x) = O'}. The approximations ia(f) can 
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be implemented using tluec layer neural nets with threshold logic neurons. These 
approximations are of t.he form 

l!,othetlC approximatIOn to the mth component of i o , (f) , r~ ______________ ~A~ ________________ , 

C' ca , Am 11 

lo,(f) = U U n [S(hu),9~m)nS(h_Uj,_(9;m+v>;mJ)]' (5) 
111=1 A",=tj=l ~~ ______________ ~v~ _______________ J 

Il-rectangle of dimensions v>~m x ' . ' X v>~m 

where !/J;m is the "\yidlh" in t.he jt.h dimension of the Am t.h rectangula.r part of the 

mt.h component (disjoint connected subset) C~J~I) of the ith approximate above-set 
fa, I Ca, is t he number of compollcnts of the above-set la, (1), Am is the number of 

C01IV(X l1-rectangles (paris) that cHe required to form an c/-cover for c~')(J), Uj l::. 

(U)l), ... 'll~It)). ujlJl) = /ijln . S'(hw ,(d is the ll-half-space defined by the hyperplane 
hw 9: , 

S'(hw,/I) = {.r: htuJI(.t.) 2:: a}, 
where hw ,I:I(.I') = w.r - 0 and U' = (WI • . . . , wll ). 

The function f is then approximat.ed by 
N 

~S-ua,.,( . ~ 1 1 L ( , .f ,I) - -. -r + ---; 17 (f) :t. ), 
2.\ /", '" 

1=1 

(6) 

(7) 

where OJ = iA.l, i L. .. " .V and I..., is the indicator function of a set S. The 

approximatioll IY-uas(.!') i:-s t.1H'11 further approximated by implementing (5) using 
N :3-layel' Il emal net.ti ill parnll('I : 

:NN 1 LX IV/~<l I\A'~':) (LIl (i) (i)) 
j (J: ) = -+.'ill tigl1 W k 11:'1 - O~. x E X;l=dO,Pi], (8) 

1 .. \ ' . mi' m 

/=1 1J1=1 k",=l ,/=1 
~~~'-______ -"v".. ______ ~J 

first 

where .r = (.t't, ... , ,vlJ)T, .s o = Z' and l/~i) is the number of nodes in the second 
layer . The last. layer combines t.he abov(~-sct.s il1 the manner of (7). The general 
architecture of tIw llet.work is shown in figure 2. 

4 NUMBER OF BITS NEEDED TO REPRESENT THE 
WEIGHTS OF THE NETWORK 

The t.wo main results of t.his paper arc bounds on t.he number of nodes needed in such 
a neural net.wOl"k in order to J"(>present. f E F£,~ wit.h uniform error Cr, and bounds , 
on t.he number of bits needed t.o represent. t.he weights in such an approximation . 

Theorem 2 The 1Il/lIIber' of nodf.') needed ill a 1leural lIeiworh' of lhe above archi­
teclure ill ordu' '0 n]l1'(.')(111 ([IIY f E Ff ' ~. 10 wilhin E,. ill the sup-melt-ie is .qiven 

by 
I/f'L 1 11 P ( ) ( L ) " -+--+ 1+- -
2~,. ;:2.:" J2 4E r 

( 9) 
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Figure 2: The Neural Network architecture we adopt . 

This theorem is proved in a straight-forward manner by taking account of all the 
errors incurred in the approxima.tion of a worst-case function in Ff'';;. , 

Since compa.ring the number of nodes alone is inadequate for comparing the com­
plexity of neural nets (because the nodes themselves could implement quite complex 
functions) we have a.lso calcula.ted the number of bits needed to represent all of the _ 
weights (including zero weights which denote no connection) in order to achieve an 
cr-approximation:1 

Theoreln 3 The 1lumber- of bits needed to specify the weights in a neural network 
with the above architecture i1l order to represent an arbitrary function f E Ff'~ 
with accuracy Cr in the sup-metric is bounded above by . 

(10) 

Equation 10 can be compared with (2) to see that the neural net representation is 
close to optimal. It is suboptimal by a factor of O( e.f:-). The ,h:n term is considered 
subsumed into the B(n) term in (2). 

lThe idea of using the number of bits as a measure of network complexity has also 
recently been adopted in [5]. 
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5 FURTHER WORK 

Theorem 3 shows that the complexity of representing an arbitrary f E F£:~ is 
exponential in n. This is not so much a limitation of the neural network as an 
indication that our problem is too hard. Theorem 1 shows that if smoothness 
constraints are imposed. then the complexity can be considerably reduced. It is an 
open problem to determine whether the construction of the network presented in 
this paper can be extended to make good use of smoothness constraints. 

Of course the most important question is whether functions can be learned using 
neural networks. Apropos of this is Stone's result on rates of convergence in non­
parametric regression [17]. Although we do not have space to give details here, 
suffice it say that he shows that the gains suggested by theorem 1 by imposing 
smoothness constraints in the representation problem, are also achievable in the 
learning problem. A more general statement of this type of result, making explicit 
the connexion with €-entropy is given by Yatracos [19]: 

Them'em 4 Let Iii be a Ll-totally bounded set of measures on a probability space. 
Let the metric defined on the space be the Ll-distance between measures. Then there 
exists a uniformly consistent estimator (ji for some parameter 0 from a possibly 
infinite dimensional family of measures 8 C At whose rate of convergence in i 
asymptotically satisfies the equation 

a; = [1t •. /0) ]'/2 (11) 

where 'lie (8) is tile €-el!tropy of 8. 

Similar results have been discussed by Ben-Da.vid et al. [3] (who have made use of 
Dudley'S (loose) relationships between €-entropy and Vapnik-Chervonenkis dimen­
sion [8]) and others [12.13]. There remain many open problems in this field. One of 
the main difficulties however is the calculation of 'lit for non-trivial function classes. 
One of the most significant results would be a complete and tight determination of 
the €-entropy for a feedforward neural network. 
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