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Abstract 

Five experiments were performed using several neural network architectures to 
identify the location of a wave in the time ordered graphical results from a 
medical test. Baseline results from the first experiment found correct 
identification of the target wave in 85% of cases (n=20). Other experiments 
investigated the effect of different architectures and preprocessing the raw data on 
the results. The methods used seem most appropriate for time oriented graphical 
data which has a clear starting point such as electrophoresis Or spectrometry 
rather than continuous teSts such as ECGs and EEGs. 

I INTRODUCTION 

Complex wave form recognition is generally considered to be a difficult task for 
machines. Analytical approaches to this problem have been described and they work with 
reasonable accuracy (Gabriel et al. 1980. Valdes-Sosa et al. 1987) The use of these 
techniques, however, requires substantial mathematical Iraining and the process is often 
time consuming and labor intensive (Boston 1987). Mathematical modeling also requires 
substantial knowledge of the particular details of the wave forms in order to determine 
how to apply the models and to determine detection criteria. Rule-based expert systems 
have also been used for the recognition of wave forms (Boston 1989). They require that a 
knowledge engineer work closely with a domain expert to exlract the rules that the expert 
uses to perform the recognition. If the rules are ad hoc or if it is difficult for experts to 
articulate the rules they use. then rule-based expert systems are cumbersome to 
implement. 

This paper describes the use of neural networks to recognize the location of peak V from 
the wave-form recording of brain stem auditory evoked potential tests. General 
discussions of connectionist networks can be found in (Rumelhart and McClelland 1986). 
The main features of neural networks that are relevant for our purposes revolve around 
their ease of use as compared to other modeling techniques. Neural networks provide 
several advantages over modeling with differential equations or rule-based systems. First. 
there is no knowledge engineering phase. The network is trained automatically using a 
series of examples along with the "right answer" to each example. Second. the resulting 
network typically has significant predictive power when novel examples are presented. 
So, neural network technology allows expert performance to be mimicked without 
requiring that expert knowledge be codified in a Iraditional fashion. In addition. neural 
networks. when used to perform signal analysis. require vastly less restrictive 
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assumptions about the strucblre of the input signal than analytical techniques (Gonnan 
and Sejnowski 1988). Still, neural nets have not yet been widely applied to problems of 
this sort (DeRoach 1989). Nevertheless, it seems that interest is growing in using 
computers, especially neural networks, to solve advanced problems in medical decision 
making (Sblbbs 1988). 

1.1 BRAIN STEM AUDITORY EVOKED POTENTIAL (BAEP) 

Sensory evoked potentials are electric signals from the brain that occur in response to 
transient auditory, somatosensory, or visual stimuli such as a click, pinprick, or flash of 
light. The signals, recorded from electrodes placed on a subject's scalp, are a measure of 
the electrical activity in the subject's brain both from response to the stimulus and from 
the spontaneous electroencephalographic (EEG) activity of the brain. One way of 
discerning the response to the stimulus from the background EEG noise is to average the 
individual responses from many identical stimuli. When "cortical noise" has been 
removed in this way, evoked potentials can be an important noninvasive measure of 
central nervous system function. They are used in sbldies of physiology and psychology, 
for the diagnosis of neurologic disorders (Greenberg et al. 1981). Recently attention has 
focused on continuous automated monitoring of the BAEP intraoperatively as well as 
post-operatively for evaluation of central nervous system function (Moulton et al. 1991). 
Brain stem auditory evoked potentials (BAEP) are generated in the auditory pathways of 
the brain stem. They can be used to asses hearing and brain stem function even in 
unresponsive or uncooperative patients. 

The BAEP test involves placing headphones on the patient, flooding one ear with white 
noise. and delivering clicks into the other ear. Electrodes on the scalp both on the same 
side (ipsilateral) and opposite side (contralateral) of the clicks record the electric potentials 
of brain activity for 10 msec. following each click. In the protocol used at the University 
of Pittsburgh Presbyterian University Hospital (pUH). a series of 2000 clicks is delivered 
and the results from each click - a graph of electrode activit>;: over the 10 msec. - are 
averaged into a single graph. Results from the stimulation of one ear with the clicks is 
referred to as "one ear of data". 

A graph of the wave fonn which results from the averaging of many stimuli appears as a 
series of peaks following the stimulus (Figure 1). The resulting graph typically has 7 
important peaks but often includes other peaks resulting from the noise which remains 
after averaging. Each important peak represents the firing of a group of neurons in the 
auditory neural pathwayl. The time of arrival of the peaks (the peak latencies) and the 
amplitudes of the peaks are used to characterize the response. The latencies of peaks I. III, 
and V are typically used to detennine if there is evidence of slowed central nervous system 
conduction which is of value in the diagnosis of multiple sclerosis and other disease 
states2. Conduction delay may be seen in the left, right, or both BAEP pathways. It is 
of interest that the time of arrival of a wave on the ipsilateral and contralateral sides may 
be slightly different. This effect becomes more exagerated the more distant the correlated 
peaks are from the origin (Durrant. Boston, and Martin 1990). 

Typically there are several issues in the interpretation of the graphs. First. it must be 
clear that some neural response to the auditory stimulus is represented in the wave fonn. 
If a response is present, the peaks which correspond to nonnal and abnonnal responses 
must be distinguished from noise which remains in the signal even after averaging. Wave 
IV and wave V occasionally fuse, forming a wave IV N complex, confounding this 

IPutative generators are: I-Acoustic nerve; II-Cochlear nucleus; III-Superior olivary 
nucleus; IV -Lateral lemniscus; V -Inferior colliculus: VI-Medial geniculate nucleus; 
VII-Auditory radiations. 

20ther disorders include brain edema. acoustic neuroma. gliomas. and central pontine 
myelinolysis. 
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process. In these cases we say that wave V is absenL Finally, the latencies and possibly 
the amplitudes of the identified peaks are be measured and a diagnostic explanation for 
them is developed. 
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Figure I. BAEP chart with the time of arrival for waves I to V identified. 

2 METHODS AND PROCEDURES 

2.1 DATA 

Plots of BAEP tests were obtained from the evoked potential files from the last 4 years at 
PUH. A preliminary group of training cases consisting of 13 patients or 26 ears was 
selected by traversing the files alphabetically from the beginning of the alphabet. This 
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group was subsequently extended to 25 patients Or 50 ears, 39 nonnals and 11 abnonnals. 
Most BAEP tests show no abnonnalities: only 1 of the first 40 ears was abnonnal. In 
order to create a training set with an adequate number of abnonnal cases we included only 
patients with abnonnal ears after these first 40 had been selected. Ten abnonnal ears were 
obtained from a search of 60 patient meso Test cases were selected from files starting at 
the end of the alphabet, moving toward the beginning, the opposite of the process used 
for the training cases. Unlike the training set - where some cases were selected over 
others - all cases were included in the test set without bias. No cases were common to 
both sets. A total of 10 patients or 20 ears were selected. Table I summarizes the input 
data. 

For one of the experiments, another data set was made using the ipsilateral data for 80 
inputs and the derivative of the curve for the other 80 inputs. The derivative was 
computed by subtracting the amplitude of the point's successor from the amplitude of the 
point and dividing by 0.1. 

The ipsilateral and contralateral wave recordings were transfonned to machine readable 
fonnat by manual tracing with a BitPad Plus~ digitizer. A fonnal protocol was followed 
to ensure that a high fidelity transcription had been effected. The approximately 400 
points which resulted from the digitization of each ear were graphed and compared to the 
original tracings. If the tracings did not match, then the transcription was performed 
again. In addition, the originally recorded latency values for peak V were corrected for any 
distortion in the digitizing process. The distortion was judged by a neurologist to be 
minimal. 

Table I: Composition of Input Data 

Cases NonnalEars Abnonnal Ears Total Ears 

Prolonged V Absent V Total 

Training 39 8 3 11 50 

Testing 18 0 2 2 20 

A program was written to process the digital wave fonns, creating an output file readable 
by the neural network simulator. The program discarded the rust and last 1 msec. of the 
recordings. The remaining points were sampled at 0.1 msec. intervals using linear 
interpolation to estimate an amplitude if a point had not been recorded within 0.01 msec. 
of the desired time. These points were then normalized to the range <-1,1>. The 
resulting 80 points for the ipsilateral wave and 80 points for the contralateral wave (a 
total of 160 points) were used as the initial activations for the input layer of processing 
elements. 

2.2 ARCHITECTURES 

Each of the four network architectures had 160 input nodes. Each node represented the 
amplitude of the wave at each sample time (1.0 to 8.9 ms, every 0.1 ms). Each 
architecture also had 80 output nodes with a similar temporal interpretation (Figure 2). 
Architecture 1 (AI) had 30 hidden units connected only to the ipsilateral input units. 5 
hidden units connected only to the contralateral input units and 5 hidden units connected 
to all the input units. The hidden units for all architectures were fully connected to the 
output units. Architecture 2 (A2) reversed these proportions. Architecture 3 (A3) was 
fully connected to the inputs. Architecture 4 (A4) preserved the proportions of Al but 
had 16 ipsilateral hidden units, 3 contralateral. and 3 connected to both. All architectures 
used the sigmoid transfer function at both the hidden and output layers and all units were 
attached to a bias unit. 

The distribution of the hidden units was chosen with the knowledge that human experts 
usually use information from the ipsilateral side but refer to the contralateral side only 
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when features in the ipsilateral side are too obscure to resolve. The selection of the 
number of hidden units in neural network models remains an art. In order to detennine 
whether the size of the hidden unit layer could be changed, we repeated the experiments 
using Architecture 2 where the number of hidden units was reduced to 16, with 10 
connected to the ipsilateral inputs, 3 to the contralateral inputs, and 3 connected to all the 
inputs. 

2.3 TRAININ G 

For training, target values for the output layer were all 0.0 except for the output nodes 
representing the time of arrival for wave V (reported on the BAEP chart) and one node on 
each side of it The peak node target was 0.95 and the two adjacent nodes had targets of 
0.90. For cases in which wave V was absent, the target for all the output nodes was 0.0. 

A neural network simulator (NeuralWorks Professional II~ version 3.5) was used to 
construct the networks and run the simulations. The back-propagation learning algorithm 
was used to train the networks. The random number generator was initialized with 
random number seeds taken from a random number table. Then network weights were 
initialized to random values between -0.2 and 0.2 and the training begun. Since our 
random number generator is detenninistic - given the random number seed - these trials 
are replicable. 

output 

hidden 

'--____ --' input 

ipsilateral contralateral 

Figure 2. Diagram of Architecture 1 with representation of input and output data shown. 

Each of the 50 ears of data in the training set was presented using a randomize, shuffle, 
and deal technique. Network weights were saved at various stages of learning, usually 
after every 1000 presentations (20 epochs) until the cumulative RMS error for an epoch 
fell below 0.01. The contribution of each training example to the total error was 
examined to detennine whether a few examples were the source of most of the error. If 
so, training was continued until these examples had been learned to an error level 
comparable to the rest of the cases. After training, the 20 ears in the test set were 
presented to each of the saved networks and the output nodes of the net were examined for 
each test case. 
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2.4 ANALYSIS OF RESULTS 

A threshold method was used to analyze the data. For each of the test cases the actual 
location of the maximum valued output unit was compared to the expected location of the 
maximum valued output unit. For a network result to be classified as a correct 
identification in the wave V present (true positive), we require that the maximum valued 
output unit have an activation which is over an activity-threshold (0.50) and that the unit 
be within a distance-threshold (0.2 msec.) of the expected location of wave V. For a true 
negative identification of wave V - a correct identification of wave V being absent - we 
require that all the output activities be below the activity threshold and that the case have 
no wave V to find. The network makes a false positive prediction of the location of wave 
V if some activity is above the activity threshold for a case which has no wave V. 
Finally, there are two ways for the network to make a false negative identification of 
wave V. In both instances, wave V must be present in the case. In one instance, some 
output node has activity above the activity threshold, but it is outside of the distance 
threshold. This corresponds to the identification of a wave V but in the wrong place. In 
the other instance, no node attains activity over the activity threshold, corresponding to a 
failure to find a wave V when there exists a wave V in the case to find. 

2.5 EXPERIMENTS 

Five experiments were performed. The flfst four used different architectures on the same 
data set and the last used architecture Al on the derivatives data set. Each of the network 
architectures was trained from different random starting positions. For each trial, a 
network was randomized and trained as described above. The networks were sampled as 
learning progressed. 

Experiment 1 determined how well archtecture Al could identify wave V and provided 
baseline results for the remaining experiments. Experiments 2 and 3 tested whether our 
use of more hidden units attached to ipsilateral data made sense by reversing the 
proportion of hidden units alloted to ipsilateral data processing (experiment 2) and by 
tring a fully connected network (experiment 3). Experiment 4 determined whether fewer 
hidden units could be used. Experiment 5 investigated whether preprocessing of the input 
data to make derivative information available would facilitate network identification of 
peak location. 

3 RESULTS 

Results from the best network found for each of five experiments are shown in Table 2. 

Table 2: Results from presentation of 20 test cases to various network architectures. 

Experiment Network TP 'IN Total FP FN Total 

I Al 16 1 17 1 2 3 

2 A2 16 0 16 2 2 4 

3 A3 16 0 16 2 2 4 

4 A4 15 0 IS 3 2 5 

5 Al 15 1 16 1 3 4 

4 DISCUSSION 

In Experiment I, the three cases which were incorrectly identified were examined closely. 
It is not evident from inspection why the net failed to identify the peaks or identified 
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peaks where there were none to identify. Where peaks are present, they are not unusually 
located or surrounded by noise. The appearance of their shape seems similar to the cases 
which were identified correctly. We believe that more training examples which are 
"similar" to these 3 test cases, as well as examples with greater variety, will improve 
recognition of these cases. This improvement comes not from better generalization but 
rather from a reduced requirement for generalization. If the net is trained with cases which 
are increasingly similar to the cases which will be used to test it, then recognition of the 
test cases becomes easier at any given level of generalization. 

The distribution of hidden units in Al was chosen with the knowledge that human experts 
use information primarily from the ipsilateral side, referring to the contralateral side only 
when ipsilateral features are too obscure to resolve. Experiments 2 and 3 investigate 
whether this reliance on ipsilateral data suggests that there should be more hidden units 
for the ipsilateral side or for the contralateral side. The identical results from these 
experiments are similar to those of Experiment l. One interpretation is that it is possible 
to make diagnoses of BAEPs using very few features from the ipsilateral side. Another 
interpretation is that it is possible to use the contralateral data as the chief information 
source, contrary to our expert's belief. 

Experiment 4 investigates whether fewer features are needed by restricting the hidden layer 
to 20 hidden units. The slight degradation of performance indicates that it is possible to 
make BAEP diagnoses with fewer ipsilateral features. Experiment 5 utilized the 
ipsilateral waveform and its derivative to determine whether this pre-processing would 
improve the results. Surprisingly, the results did nOl improve, but it is possible that a 
better estimator of the derivative will prove this method useful. 

Finally, when the weights from all the networks above were examined, we found that 
amplitudes from only the area where wave V falls were used. This suggests that it is not 
necessary to know the location of wave III before determining the location of wave V, in 
sharp contrast to expert's intuition. We believe the networks form a "local expert" for the 
identification of wave V which does not need 10 interact with da"l from other parts of the 
graph, and that other such local experts will be formed as we expand the project's scope. 

5 CONCLUSIONS 

Automated wave form recognition is considered to be a difficult task for machines and an 
especially difficult task for neural networks. Our results offer some encouragement that 
in some domains neural networks may be applied to perform wave form recognition and 
that the technique will be extensible as problem complexity increases. 

Still, the accuracy of the networks we have discussed is not high enough for clinical use. 
Several extensions have been attempted and others considered including 1) increasing the 
sampling rate to decrease the granularity of the input data, 2) increasing the training set 
size, 3) using a different representation of the output for wave V absent cases, 4) using a 
different representation of the input, such as the derivative of the amplitudes, and 5) 
architectures which allow hybrids of these ideas. 

Finally. since many other tests in medicine as well as other fields require the 
interpretation of graphical data, it is tempting to consider extending this method to other 
domains. Many other tests in medicine as well as other fields require the interpretation of 
graphical data.One distinguishing feature of the BAEP is that there is no difficulty with 
the time registration of the data; we always know where to start looking for the wave. 
This is in contrast to an EKG, for example, which may require substantial effort just to 
identify the beginning of a QRS complex. Our results indicate that the interpretation of 
graphs where the time registration of data is not an issue is possible using neural 
networks. Medical tests for which this technique would be appropriale include: other 
evoked potentials, spectrometry, and gel electrophoresis. 
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