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Abstract 

This paper briefly describes an artificial neural network for preattentive 
visual processing. The network is capable of determiuing image motioll in 
a type of stimulus which defeats most popular methods of motion detect.ion 
- a subset of second-order visual motion stimuli known as drift-balanced 
stimuli(DBS). The processing st.ages of the network described in this paper 
are integratable into a model capable of simultaneous motion extractioll. 
edge detection, and the determination of occlusion. 

1 INTRODUCTION 

Previous methods of motion detection have generally been based on one of 
two underlying approaches: correlation; and gradient-filter. Probably the best 
known example of the correlation approach is th(! Reichardt movement detEctor 
[Reiehardt 1961]. The gradient-filter (GF) approach underlies the work of AdElson 
and Bergen [Adelson 1985], and Heeger [Heeger L9H8], amongst others. 

These motion-detecting methods eannot track DBS, because DBS Jack essential 
componellts of information needed by such methods. Both the correlation and 
GF approaches impose constraints on the input stimuli. Throughout the image 
sequence, correlation methods require information that is spatiotemporally corre­
latable; and GF motion detectors assume temporally constant spatial gradi,'nts. 

"Current address: Experimental Psychology, School of Biological Sciences, Sussex 
University. 
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The network discussed here does not impose such constraints. Instead, it extracts 
motion energy and exploits the spatial coherence of movement (defined more for­
mally in the Gestalt theory of common fait [Koffka 1935]) to achieve tracking. 

The remainder of this paper discusses DBS image sequences, then correlation meth­
ods, then GF methods in more detail, followed by a qualitative description of this 
network which can process DBS. 

2 SECOND-ORDER AND DRIFT-BALANCED STIMULI 

There has been a lot of recent interest in second-order visual stimuli , and DBS in 
particular ([Chubb 1989, Landy 1991]). DBS are stimuli which give a clear percept 
of directional motion, yet Fourier analysis reveals a lack of coherent motion energy, 
or energy present in a direction opposing that of the displacement (hence the term 
'drift-balanced '). Examples of DBS include image sequences in which the contrast 
polarity of edges present reverses between frames. 

A subset of DBS, which are also processpd by the network, are known as micro­
balanced stimuli (MBS). MBS cont,ain no correlatable features and are drift­
balanced at all scales. The MBS image sequences used for this work were created 
from a random-dot image in which an area is successively shifted by a constant 
displacement between each frame and sim ultaneously re-randomised. 

3 EXISTING METHODS OF MOTION DETECTION 

3.1 CORRELATION METHODS 

Correlation methods perform a local cross-correlation in image space: the matching 
of features in local neighbourhoods (depending upon displacement/speed) between 
image frames underlies the motion detection. Examples of this method include 
[Van Santen 1985J. Most correlation models suffer from noise degradation in that 
any noise features extracted by the edge detection are available for spurious corre­
lation . 

There has been much recent debate questioning the validity of correlation methods 
for modelling human motion detection abilit.ies. In addition to DBS, there is also 
increasing psychophysical evidence ([Landy 1991, Mather 1991]) which correlation 
methods cannot account for. 

These factors suggest that correlation techniques are not suitable for low-level mo­
tion processing where no information is available concerning what is moving (as 
with MBS). However, correlation is a more plausible method when working with 
higher level constructs such as tracking in model-based vision (e.g . [Bray 1990]), 

3.2 GRADIENT-FILTER (GF) METHODS 

GF methods use a combination of spatial filtering to determine edge positions and 
temporal filtering to determine whether such edges are moving. A common assump­
tion used by G F methods is that spatial gradients are constant. A recent method by 
Verri [Verri 1990], for example, argu es that flow det.ection is based upon the notion 
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Figure 1: The Network (Schematic) 

of tracking spatial gradient magnitude and/or direction, and that any variation in 
the spatial gradient is due to some form of motion deformation - i.e. rotation, 
expansion or shear. Whilst for scenes containing smooth surfaces this is a valid 
approximation, it is not the case for second-order stimuli such as DBS. 

4 THE NETWORK 

A simplified diagram illustrating the basic structure of the network (based upon 
earlier work ([Tunley 1990, Tunley 1991a, Tunley 1991b]) is shown in Figure 1 
( the edge detection stage is discussed elsewhere ([Tunley 1990, Tunley 1991 b, 
Tunley 1992]). 

4.1 INPUT RECEPTOR UNITS 

The units in the input layer respond to rectified local changes in image intensity 
over time. Each unit has a variable adaption rate, resulting in temporal sensitivity 
- a fast adaption rate gives a high temporal filtering rate. The main advantages for 
this temporal averaging processing are: 

• Averaging removes the D.C. component of image intensity. This elimi­
nates problematic gain for motion in high brightness areas of the image. 
[Heeger 1988] . 

• The random nature of DBS/MBS generation cannot guarantee that each pixel 
change is due to local image motion. Local temporal averaging smooths the 
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moving regions, thus creating a more coherently structured input for the motion 
units. 

The input units have a pointwise rectifying response governed by an autoregressive 
filter of the following form: 

(1 ) 

where a E [0,1] is a variable which controls the degree of temporal filtering of the 
change in input intensity, nand n - 1 are successive image frames, and Rn and In 
are the filter output and input, respectively. 

The receptor unit responses for two different a values are shown in Figure 2. C\' can 
thus be used to alter the amount of motion blur produced for a particular frame 
rate, effectively producing a unit with differing velocity sensitivity. 

( a) (b) 

Figure 2: Receptor Unit Response: (a) a = 0.3; (b) a = 0.7. 

4.2 MOTION UNITS 

These units determine the coherence of image changes indicated by corresponding 
receptor units. First-order motion produces highly-tuned motion activity - i.e. a 
strong response in a particular direction - whilst second-order motion results in less 
coherent output. 

The operation of a basic motion detector can be described by: 

(2) 

w here !vI is the detector, (if, j') is a point in frame n at a distance d from (i, j), 
a point in frame n - 1, in the direction k. Therefore, for coherent motion (i.e. 
first-order), in direction k at a speed of d units/frame, as n ---- 00: 

(3) 
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The convergence of motion activity can be seen using an example. The stimulus 
sequence used consists of a bar of re-randomising texture moving to the right in 
front of a leftward moving background with the same texture (i.e. random dots). 
The bar motion is second-order as it contains no correlatable features, whilst the 
background consists of a simple first-order shifting of dots between frames. Fig­
ures 3, 4 and 5 show two-dimensional images of the leftward motion activity for the 
stimulus after 3,4 and 6 frames respectively. The background, which has coherent 
leftward movement (at speed d units/frame) is gradually reducing to zero whilst 
the microbalanced rightwards-moving bar, remains active. The fact that a non-zero 
response is obtained for second-order motion suggests, according to the definition 
of Chubb and Sperling [Chubb 1989], that first-order detectors produce no response 
to MBS, that this detector is second-order with regard to motion detection. 

Figure 3: Leftward Motion Response to Third Frame in Sequence. 

HfOL(tlyllmh~ .4) .. ' 

Figure 4: Leftward Motion Response to Fourth Frame. 

Hf Ol (llyrlnh ~. 6) 

Figure 5: Leftward Motion Response to Sixth Frame. 

The motion units in this model are arranged on a hexagonal grid. This grid is 
known as a flow web as it allows information to flow, both laterally between units 
of the same type, and between the different units in the model (motion, occlusion 
or edge). Each flow web unit is represented by three variables - a position (a, b) 
and a direction k, which is evenly spaced between 0 and 360 degrees. In this model 
each k is an integer between 1 and kmax - the value of kmax can be varied to vary 
the sensitivity of the units. 

A way of using first-order techniques to discriminate between first and second­
order motions is through the concept of coherence. At any point in the motion­
processed images in Figures 3-5, a measure of the overall variation in motion activity 
can be used to distinguish between the motion of the micro-balanced bar and its 
background. The motion energy for a detector with displacement d, and orientation 
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k, at position (a, b), can be represented by Eabkd. For each motion unit, responding 
over distance d, in each cluster the energy present can be defined as: 

E _ mink(Mabkd) 
abkdn - AI 

abkd 
(4) 

where mink(xk) is the minimum value of x found searching over k values. If motion 
is coherent, and of approximately the correct speed for the detector M, then as 
n -+ 00: 

(5) 

where km is in the actual direction of the motion. In reality n need only approach 
around 5 for convergence to occur. Also, more importantly, under the same conver­
gence conditions: 

(6) 

This is due to the fact that the minimum activation value in a group of first-order 
detectors at point (a, b) will be the same as the actual value in the direction, km . 

By similar reasoning, for non-coherent motion as n -+ 00: 

Eabkdn - 1 'Vk (7) 

in other words there is no peak of activity in a given direction . The motion energy 
is ambiguous at a large number of points in most images, except at discontinuities 
and on well-textured surfaces. 

A measure of motion coherence used for the motion units can now be defined as: 

Mc( abkd) = . Eabkd 
",", k max E 
L...k=l abkd 

(8) 

For coherent motion in direction km as n -+ 00: 

(9) 

Whilst for second-order motion, also as n - 00: 

(10) 

Using this approach the total Me activity at each position - regardless of coherence, 
or lack of it - is unity. Motion energy is the same in all moving regions, the difference 
is in the distribution, or tuning of that energy. 

Figures 6, 7 and 8 show how motion coherence allows the flow web structure to 
reveal the presence of motion in microbalanced areas whilst not affecting the easily 
detected background motion for the stimulus. 
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Figure 6: Motion Coherence Response to Third Frame 

Figure 7: Motion Coherence Response to Fourth Frame 

Figure 8: Motion Coherence Response to Sixth Frame 

4.3 OCCLUSION UNITS 

These units identify discontinuities in second-order motion which are vitally im­
portant when computing the direction of that motion . They determine spatial and 
temporal changes in motion coherence and can process single or multiple motions at 
each image point . Established and newly-activated occlusion units work, through 
a gating process, to enhance continuously-displacing surfaces, utilising the concept 
of visual inertia. 

The implementation details of the occlusion stage of this model are discussed else­
where [Tunley 1992], but some output from the occlusion units to the above second­
order stimulus are shown in Figures 9 and 10. The figures show how the edges of 
the bar can be determined. 
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Figure 9: Occluding Motion Information: Occlusion activity produced by an in­
crease in motion coherence activity. 
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Figure 10: Occluding Motion Information: Occlusion activity produced by a de­
crease in motion activity at a point. Some spurious activity is produced due to the 
random nature of the second-order motion information. 
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