
The Efficient Learning of Multiple Task
Sequences

Satinder P. Singh
Department of Computer Science

University of Massachusetts
Amherst, MA 01003

Abstract

I present a modular network architecture and a learning algorithm based
on incremental dynamic programming that allows a single learning agent
to learn to solve multiple Markovian decision tasks (MDTs) with signif­
icant transfer of learning across the tasks. I consider a class of MDTs,
called composite tasks, formed by temporally concatenating a number of
simpler, elemental MDTs. The architecture is trained on a set of compos­
ite and elemental MDTs. The temporal structure of a composite task is
assumed to be unknown and the architecture learns to produce a tempo­
ral decomposition. It is shown that under certain conditions the solution
of a composite MDT can be constructed by computationally inexpensive
modifications of the solutions of its constituent elemental MDTs.

1 INTRODUCTION

Most applications of domain independent learning algorithms have focussed on
learning single tasks. Building more sophisticated learning agents that operate in
complex environments will require handling multiple tasks/goals (Singh, 1992). Re­
search effort on the scaling problem has concentrated on discovering faster learning
algorithms, and while that will certainly help, techniques that allow transfer of
learning across tasks will be indispensable for building autonomous learning agents
that have to learn to solve multiple tasks . In this paper I consider a learning agent
that interacts with an external, finite-state, discrete-time, stochastic dynamical en­
vironment and faces multiple sequences of Markovian decision tasks (MDTs).

251

252 Singh

Each MDT requires the agent to execute a sequence of actions to control the envi­
ronment, either to bring it to a desired state or to traverse a desired state trajectory
over time. Let S be the finite set of states and A be the finite set of actions available
to the agent. l At each time step t, the agent observes the system's current state
Zt E S and executes action at E A. As a result, the agent receives a payoff with
expected value R(zt, at) E R and the system makes a transition to state Zt+l E S
with probability P:r:t:r:t+l (at). The agent's goal is to learn an optimal closed loop
control policy, i.e., a function assigning actions to states, that maximizes the agent's
objective. The objective used in this paper is J = E~o -yt R(zt, at), i.e., the sum
of the payoffs over an infinite horizon. The discount factor, 0 ~ "Y ~ I, allows
future payoff to be weighted less than more immediate payoff. Throughout this
paper, I will assume that the learning agent does not have access to a model of the
environment. Reinforcement learning algorithms such as Sutton's (1988) temporal
difference algorithm and Watkins's (1989) Q-Iearning algorithm can be used to learn
to solve single MDTs (also see Barto et al., 1991).

I consider compositionally-structured MDTs because they allow the possibility of
sharing knowledge across the many tasks that have common subtasks. In general,
there may be n elemental MDTs labeled TI , T2 , ••• , Tn. Elemental MDTs cannot be
decomposed into simpler subtasks. Compo8ite MDTs, labeled GI , G2 , ••• , Gm , are
produced by temporally concatenating a number of elemental MDTs. For example,
G; = [T(j, I)T(j, 2) ... T(j, k)] is composite task j made up of k elemental tasks that
have to be performed in the order listed. For 1 $ i $ k, T(j, i) E {TI' T2 , ••• , Tn} is
the itk elemental task in the list for task G;. The sequence of elemental tasks in a
composite task will be referred to as the decompo8ition of the composite task; the
decomposition is assumed to be unknown to the learning agent.

Compo8itional learning involves solving a composite task by learning to compose
the solutions of the elemental tasks in its decomposition. It is to be emphasized that
given the short-term, evaluative nature of the payoff from the environment (often
the agent gets informative payoff only at the completion of the composite task),
the task of discovering the decomposition of a composite task is formidable. In this
paper I propose a compositional learning scheme in which separate modules learn
to solve the elemental tasks, and a task-sensitive gating module solves composite
tasks by learning to compose the appropriate elemental modules over time.

2 ELEMENTAL AND COMPOSITE TASKS

All elemental tasks are MDTs that share the the same state set S, action set A, and
have the same environment dynamics. The payoff function for each elemental task
11, 1 ~ i ~ n, is ~(z, a) = EYES P:r:y(a)ri(Y) - c(z, a), where ri(Y) is a positive
reward associated with the state Y resulting from executing action a in state Z for
task 11, and c(z, a) is the positive cost of executing action a in state z. I assume
that ri(z) = 0 if Z is not the desired final state for 11. Thus, the elemental tasks
share the same cost function but have their own reward functions.

A composite task is not itself an MDT because the payoff is a function of both

lThe extension to the case where different sets of actions are available in different states
is straightforward.

The Efficient Learning of Multiple Task Sequences 253

the state and the current elemental task, instead of the state alone. Formally, the
new state set2 for a composite task, S', is formed by augmenting the elements of
set S by n bits, one for each elemental task. For each z, E S', the projected 3tate
z E S is defined as the state obtained by removing the augmenting bits from z'.
The environment dynamics and cost function, c, for a composite task is defined by
assigning to each z, E S' and a E A the transition probabilities and cost assigned
to the projected state z E S and a E A. The reward function for composite task
Cj , rj, is defined as follows. rj(z') ;::: 0 if the following are all true: i) the projected
state z is the final state for some elemental task in the decomposition of Cj, say
task Ii, ii) the augmenting bits of z' corresponding to elemental tasks appearing
before and including sub task Ti in the decomposition of C j are one, and iii) the rest
of the augmenting bits are zero; rj(z') = 0 everywhere else.

3 COMPOSITIONAL Q-LEARNING

Following Watkins (1989), I define the Q-value, Q(z,a), for z E S and a E A, as the
expected return on taking action a in state z under the condition that an optimal
policy is followed thereafter. Given the Q-values, a greedy policy that in each state
selects an action with the highest associated Q-value, is optimal. Q-Iearning works
as follows. On executing action a in state z at time t, the resulting payoff and next
state are used to update the estimate of the Q-value at time t, Qt(z, a):

(1.0 - Qt)Qt(z, a) + ae[R(z, a) + l' max Qt(Y, a')],
a'EA

(1)

where Y is the state at time t + 1, and at is the value of a positive learning rate
parameter at time t. Watkins and Dayan (1992) prove that under certain conditions
on the sequence {at}, if every state-action pair is updated infinitely often using
Equation 1, Qt converges to the true Q-values asymptotically.

Compositional Q-Iearning (CQ-Iearning) is a method for constructing the Q-values
of a composite task from the Q-values of the elemental tasks in its decomposition.
Let QT.(z,a) be the Q-value of (z,a), z E S and a E A, for elemental task Ii,
and let Q~:(z',a) be the Q-value of (z', a), for z' E S' and a E A, for task Ii
when performed as part of the composite task Cj = [T(j, 1) ... T(j, k)]. Assume
Ii = T(j, I) . Note that the superscript on Q refers to the task and the subscript
refers to the elemental task currently being performed. The absence of a superscript
implies that the task is elemental.

Consider a set of undiscounted (1' = 1) MDTs that have compositional structure
and satisfy the following conditions:
(AI) Each elemental task has a single desired final state.
(A2) For all elemental and composite tasks, the expected value of undiscounted
return for an optimal policy is bounded both from above and below for all states.
(A3) The cost associated with each state-action pair is independent of the task
being accomplished.

2The theory developed in this paper does not depend on the particular extension of S
chosen, as long as the appropriate connection between the new states and the elements of
S can be made.

254 Singh

(A4) For each elemental task 71, the reward function ri is zero for all states except
the desired final state for that task. For each composite task C j , the reward function
rj is zero for all states except pouibly the final states of the elemental tasks in its
decomposition (Section 2).
Then, for any elemental task Ii and for all composite tasks Cj containing elemental
task 71, the following holds:

Q~:(z',a) QT.(Z, a) + K(Cj,T(j, I», (2)

for all z' E S' and a E A, where z E S is the projected state, and K (Cj, T(j, I» is a
function of the composite task Cj and subtask T(j, I), where Ti = T(j, I). Note that
K(Cj , T(j, I» is independent of the state and the action. Thus, given solutions of
the elemental tasks, learning the solution of a composite task with n elemental tasks
requires learning only the values of the function K for the n different subtasks. A
proof of Equation 2 is given in Singh (1992).

WIll.
NoIN

N(O.G)

a

Q Q Q
Networtc • •• Networtt

1 n

Figure 1: The CQ-Learning Architecture (CQ-L). This figure is adapted from Jacobs
et al. (1991). See text for details.

Equation 2 is based on the assumption that the decomposition of the composite
tasks is known. In the next Section, I present a modular architecture and learning
algorithm that simultaneously discovers the decomposition of a composite task and
implements Equation 2.

4 CQ-L: CQ-LEARNING ARCHITECTURE

Jacobs (1991) developed a modular connectionist architecture that performs task
decomposition. Jacobs's gating architecture consists of several expert networks and
a gating network that has an output for each expert network. The architecture
has been used to learn multiple non-sequential tasks within the supervised learning

The Efficient Learning of Multiple Task Sequences 255

Table 1: Tasks. Tasks Tl, T2, and T3 are elemental tasks; tasks G l , G2 , and G3

are composite tasks. The last column describes the compositional structure of the
tasks.

Label Command De.eription Deeompo.ition
'11 000001 VlS1t A Tl
T2 000010 VlS1t B T2
T3 000100 V1S1t C T3
0 1 001000 VlSlt A and then C 1113
C2 010000 VlS1t B and then C T2 T3

C3 100000 V1S1t A, then B and then C T1 T2T3

paradigm. I extend the modular network architecture to a CQ-Learning architec­
ture (Figure I), called CQ-L, that can learn multiple compositionally-structured
sequential tasks even when training information required for supervised learning is
not available. CQ-L combines CQ-learning and the gating architecture to achieve
transfer of learning by "sharing" the solutions of elemental tasks across multiple
composite tasks. Only a very brief description of the CQ-L is provided in this
paper; details are given in Singh (1992) .

In CQ-L the expert networks are Q-learning networks that learn to approximate
the Q-values for the elemental tasks. The Q-networks receive as input both the
current state and the current action. The gating and bias networks (Figure 1)
receive as input the augmenting bits and the task command used to encode the
current task being performed by the architecture. The stochastic switch in Figure 1
selects one Q-network at each time step. CQ-L's output, Q, is the output of the
selected Q-network added to the output of the bias network.

The learning rules used to train the network perform gradient descent in the log
likelihood, L(t), of generating the estimate of the desired Q-value at time t, denoted
D(t), and are given below:

8 log L(t)
qj(t) + oQ 8qj(t) ,

8 log L(t)
Si(t) + Og 8Si(t) ,and

b(t) + ob(D(t) - Q(t)),
where qj is the output of the jt" Q-network, Si is the it" output of the gating
network, b is the output of the bias network, and 0Q, Ob and Og are learning rate
parameters. The backpropagation algorithm (e.g., Rumelhart et al., 1986) was
used to update the weights in the networks. See Singh (1992) for details.

5 NAVIGATION TASK

To illustrate the utility of CQ-L, I use a navigational test bed similar to the one used
by Bachrach (1991) that simulates a planar robot that can translate simultaneously

256 Singh

c

G

Figure 2: Navigation Testbed. See text for details.

and independently in both ~ and y directions. It can move one radius in any
direction on each time step. The robot has 8 distance sensors and 8 gray-scale
sensors evenly placed around its perimeter. These 16 values constitute the state
vector. Figure 2 shows a display created by the navigation simulator. The bottom
portion of the figure shows the robot's environment as seen from above. The upper
panel shows the robot's state vector. Three different goal locations, A, B, and C,
are marked on the test bed. The set of tasks on which the robot is trained are shown
in Table 1. The elemental tasks require the robot to go to the given goal location
from a random starting location in minimum time. The composite tasks require the
robot to go to a goal location via a designated sequence of subgoallocations.

Task commands were represented by standard unit basis vectors (Table 1), and thus
the architecture could not "parse" the task command to determine the decomposi­
tion of a composite task. Each Q-network was a feedforward connectionist network
with a single hidden layer containing 128 radial basis units. The bias and gating
networks were also feedforward nets with a single hidden layer containing sigmoid
units. For all ~ E S U Sf and a E A, c(~, a) = -0.05. ri(~) = 1.0 only if ~ is the
desired final state of elemental task Ii, or if ~ E Sf is the final state of composite
task Cii ri(~) = 0.0 in all other states. Thus, for composite tasks no intermediate
payoff for successful completion of subtasks was provided.

6 SIMULATION RESULTS

In the simulation described below, the performance of CQ-L is compared to the
performance of a "one-for-one" architecture that implements the "learn-each-task­
separately" strategy. The one-for-one architecture has a pre-assigned distinct net-

The Efficient Learning of Multiple Task Sequences 257

work for each task, which prevents transfer of learning. Each network of the one­
for-one architecture was provided with the augmented state.

,oo - ...
- COA. -- - ONE-FOA.oNE ... • , .

1 .. 1-8. ,
I .. I " 0 I ' 0

t t··
,

t-o',
- COA. f ,

- C<>L --- ---'I - -- ON.·FOA-ONE 'I ' ' 'I .- • ~ ,~ I', •
1 1 '; V \ 1-

oo , .'t . , ,1,1 I,' I ..
0 ... ' ... , ... ,- , , -

TrW NIJ1rioer (for T .. k A) Trial Nurrber (for T .. k [AB)) Til .. Number (fer TMk [ABC))

Figure 3: Learning Curves for Multiple tasks.

Both CQ-L and the one-for-one architecture were separately trained on the six
tasks T1 , T2, T3 , ClI C2 , and C3 until they could perform the six tasks optimally.
CQ-L contained three Q-networks, and the one-for-one architecture contained six
Q-networks. For each trial, the starting state of the robot and the task identity
were chosen randomly. A trial ended when the robot reached the desired final state
or when there was a time-out. The time-out period was 100 for the elemental tasks,
200 for C1 and C2 , and 500 for task C3 • The graphs in Figure 3 show the number
of actions executed per trial. Separate statistics were accumulated for each task.

The rightmost graph shows the performance of the two architectures on elemental
task TI. Not surprisingly, the one-for-one architecture performs better because
it does not have the overhead of figuring out which Q-network to train for task
T1 . The middle graph shows the performance on task C I and shows that the CQ­
L architecture is able to perform better than the one-for-one architecture for a
composite task containing just two elemental tasks. The leftmost graph shows the
results for composite task C3 and illustrates the main point of this paper. The one­
for-one architecture is unable to learn the task, in fact it is unable to perform the
task more than a couple of times due to the low probability of randomly performing
the correct task sequence.

This simulation shows that CQ-L is able to learn the decomposition of a composite
task and that compositional learning, due to transfer of training across tasks, can
be faster than learning each composite task separately. More importantly, CQ-L
is able to learn to solve composite tasks that cannot be solved using traditional
schemes.

7 DISCUSSION

Learning to solve MDTs with large state sets is difficult due to the sparseness of the
evaluative information and the low probability that a randomly selected sequence
of actions will be optimal. Learning the long sequences of actions required to solve
such tasks can be accelerated considerably if the agent has prior knowledge of useful
subsequences. Such subsequences can be learned through experience in learning to

258 Singh

solve other tasks. In this paper, I define a class of MOTs, called composite MOTs,
that are structured as the temporal concatenation of simpler MOTs, called elemen­
tal MOTs. I present CQ-L, an architecture that combines the Q-Iearning algorithm
of Watkins (1989) and the modular architecture of Jacobs et al. (1991) to achieve
transfer of learning by sharing the solutions of elemental tasks across multiple com­
posite tasks. Given a set of composite and elemental MOTs, the sequence in which
the learning agent receives training experiences on the different tasks determines the
relative advantage of CQ-L over other architectures that learn the tasks separately.
The simulation reported in Section 6 demonstrates that it is possible to train CQ-L
on intermixed trials of elemental and composite tasks. Nevertheless, the ability of
CQ-L to scale well to complex sets of tasks will depend on the choice of the training
sequence.

Acknowledgements

This work was supported by the Air Force Office of Scientific Research, Bolling
AFB, under Grant AFOSR-89-0526 and by the National Science Foundation under
Grant ECS-8912623. I am very grateful to Andrew Barto for his extensive help in
formulating these ideas and preparing this paper.

References

J . R. Bachrach. (1991) A connectionist learning control architecture for naviga­
tion. In R. P. Lippmann, J. E. Moody, and D. S. Touretzky, editors, Adv4nce6 in
Neural Information Proceuing Sy6tem6 3, pages 457-463, San Mateo, CA. Morgan
Kaufmann.

A. G. Barto, S. J. Bradtke, and S. P. Singh. (1991) Real-time learning and control
using asynchronous dynamic programming. Technical Report 91-57, University of
Massachusetts, Amherst, MA. Submitted to AI Journal.

R. A. Jacobs. (1990) T46lc decomp06ition through competition in a modular connec­
tioni6t architecture. PhD thesis, COINS dept, U niv. of Massachusetts, Amherst,
Mass. U.S.A.

R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. (1991) Adaptive
mixtures of local experts. Neural Computation, 3(1).

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. (1986) Learning internal repre­
sentations by error propagation. In D. E. Rumelhart and J. L. McClelland, editors,
Parallel Distributed Proceuing: E:cploration6 in the Micr06tructure of Cognition,
vol.1: Found4tion6. Bradford Books/MIT Press, Cambridge, MA.

S. P. Singh. (1992) Transfer of learning by composing solutions for elemental se­
quential tasks. Machine Learning.

R. S. Sutton. (1988) Learning to predict by the methods of temporal differences.
Machine Learning, 3:9-44.

C. J . C. H. Watkins. (1989) Learning from Delayed Rewards. PhD thesis, Cam­
bridge Univ., Cambridge, England.

C. J. C. H. Watkins and P. Dayan. (1992) Q-learning. Machine Learning.

