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Abstract 

I present a modular network architecture and a learning algorithm based 
on incremental dynamic programming that allows a single learning agent 
to learn to solve multiple Markovian decision tasks (MDTs) with signif­
icant transfer of learning across the tasks. I consider a class of MDTs, 
called composite tasks, formed by temporally concatenating a number of 
simpler, elemental MDTs. The architecture is trained on a set of compos­
ite and elemental MDTs. The temporal structure of a composite task is 
assumed to be unknown and the architecture learns to produce a tempo­
ral decomposition. It is shown that under certain conditions the solution 
of a composite MDT can be constructed by computationally inexpensive 
modifications of the solutions of its constituent elemental MDTs. 

1 INTRODUCTION 

Most applications of domain independent learning algorithms have focussed on 
learning single tasks. Building more sophisticated learning agents that operate in 
complex environments will require handling multiple tasks/goals (Singh, 1992). Re­
search effort on the scaling problem has concentrated on discovering faster learning 
algorithms, and while that will certainly help, techniques that allow transfer of 
learning across tasks will be indispensable for building autonomous learning agents 
that have to learn to solve multiple tasks . In this paper I consider a learning agent 
that interacts with an external, finite-state, discrete-time, stochastic dynamical en­
vironment and faces multiple sequences of Markovian decision tasks (MDTs). 
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Each MDT requires the agent to execute a sequence of actions to control the envi­
ronment, either to bring it to a desired state or to traverse a desired state trajectory 
over time. Let S be the finite set of states and A be the finite set of actions available 
to the agent. l At each time step t, the agent observes the system's current state 
Zt E S and executes action at E A. As a result, the agent receives a payoff with 
expected value R(zt, at) E R and the system makes a transition to state Zt+l E S 
with probability P:r:t:r:t+l (at). The agent's goal is to learn an optimal closed loop 
control policy, i.e., a function assigning actions to states, that maximizes the agent's 
objective. The objective used in this paper is J = E~o -yt R(zt, at), i.e., the sum 
of the payoffs over an infinite horizon. The discount factor, 0 ~ "Y ~ I, allows 
future payoff to be weighted less than more immediate payoff. Throughout this 
paper, I will assume that the learning agent does not have access to a model of the 
environment. Reinforcement learning algorithms such as Sutton's (1988) temporal 
difference algorithm and Watkins's (1989) Q-Iearning algorithm can be used to learn 
to solve single MDTs (also see Barto et al., 1991). 

I consider compositionally-structured MDTs because they allow the possibility of 
sharing knowledge across the many tasks that have common subtasks. In general, 
there may be n elemental MDTs labeled TI , T2 , ••• , Tn. Elemental MDTs cannot be 
decomposed into simpler subtasks. Compo8ite MDTs, labeled GI , G2 , ••• , Gm , are 
produced by temporally concatenating a number of elemental MDTs. For example, 
G; = [T(j, I)T(j, 2) ... T(j, k)] is composite task j made up of k elemental tasks that 
have to be performed in the order listed. For 1 $ i $ k, T(j, i) E {TI' T2 , ••• , Tn} is 
the itk elemental task in the list for task G;. The sequence of elemental tasks in a 
composite task will be referred to as the decompo8ition of the composite task; the 
decomposition is assumed to be unknown to the learning agent. 

Compo8itional learning involves solving a composite task by learning to compose 
the solutions of the elemental tasks in its decomposition. It is to be emphasized that 
given the short-term, evaluative nature of the payoff from the environment (often 
the agent gets informative payoff only at the completion of the composite task), 
the task of discovering the decomposition of a composite task is formidable. In this 
paper I propose a compositional learning scheme in which separate modules learn 
to solve the elemental tasks, and a task-sensitive gating module solves composite 
tasks by learning to compose the appropriate elemental modules over time. 

2 ELEMENTAL AND COMPOSITE TASKS 

All elemental tasks are MDTs that share the the same state set S, action set A, and 
have the same environment dynamics. The payoff function for each elemental task 
11, 1 ~ i ~ n, is ~(z, a) = EYES P:r:y(a)ri(Y) - c(z, a), where ri(Y) is a positive 
reward associated with the state Y resulting from executing action a in state Z for 
task 11, and c(z, a) is the positive cost of executing action a in state z. I assume 
that ri(z) = 0 if Z is not the desired final state for 11. Thus, the elemental tasks 
share the same cost function but have their own reward functions. 

A composite task is not itself an MDT because the payoff is a function of both 

lThe extension to the case where different sets of actions are available in different states 
is straightforward. 
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the state and the current elemental task, instead of the state alone. Formally, the 
new state set2 for a composite task, S', is formed by augmenting the elements of 
set S by n bits, one for each elemental task. For each z, E S', the projected 3tate 
z E S is defined as the state obtained by removing the augmenting bits from z'. 
The environment dynamics and cost function, c, for a composite task is defined by 
assigning to each z, E S' and a E A the transition probabilities and cost assigned 
to the projected state z E S and a E A. The reward function for composite task 
Cj , rj, is defined as follows. rj( z') ;::: 0 if the following are all true: i) the projected 
state z is the final state for some elemental task in the decomposition of Cj, say 
task Ii, ii) the augmenting bits of z' corresponding to elemental tasks appearing 
before and including sub task Ti in the decomposition of C j are one, and iii) the rest 
of the augmenting bits are zero; rj(z') = 0 everywhere else. 

3 COMPOSITIONAL Q-LEARNING 

Following Watkins (1989), I define the Q-value, Q(z,a), for z E S and a E A, as the 
expected return on taking action a in state z under the condition that an optimal 
policy is followed thereafter. Given the Q-values, a greedy policy that in each state 
selects an action with the highest associated Q-value, is optimal. Q-Iearning works 
as follows. On executing action a in state z at time t, the resulting payoff and next 
state are used to update the estimate of the Q-value at time t, Qt(z, a): 

(1.0 - Qt)Qt(z, a) + ae[R(z, a) + l' max Qt(Y, a')], 
a'EA 

(1) 

where Y is the state at time t + 1, and at is the value of a positive learning rate 
parameter at time t. Watkins and Dayan (1992) prove that under certain conditions 
on the sequence {at}, if every state-action pair is updated infinitely often using 
Equation 1, Qt converges to the true Q-values asymptotically. 

Compositional Q-Iearning (CQ-Iearning) is a method for constructing the Q-values 
of a composite task from the Q-values of the elemental tasks in its decomposition. 
Let QT.(z,a) be the Q-value of (z,a), z E S and a E A, for elemental task Ii, 
and let Q~:(z',a) be the Q-value of (z', a), for z' E S' and a E A, for task Ii 
when performed as part of the composite task Cj = [T(j, 1) ... T(j, k)]. Assume 
Ii = T(j, I) . Note that the superscript on Q refers to the task and the subscript 
refers to the elemental task currently being performed. The absence of a superscript 
implies that the task is elemental. 

Consider a set of undiscounted (1' = 1) MDTs that have compositional structure 
and satisfy the following conditions: 
(AI) Each elemental task has a single desired final state. 
(A2) For all elemental and composite tasks, the expected value of undiscounted 
return for an optimal policy is bounded both from above and below for all states. 
(A3) The cost associated with each state-action pair is independent of the task 
being accomplished. 

2The theory developed in this paper does not depend on the particular extension of S 
chosen, as long as the appropriate connection between the new states and the elements of 
S can be made. 
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(A4) For each elemental task 71, the reward function ri is zero for all states except 
the desired final state for that task. For each composite task C j , the reward function 
rj is zero for all states except pouibly the final states of the elemental tasks in its 
decomposition (Section 2). 
Then, for any elemental task Ii and for all composite tasks Cj containing elemental 
task 71, the following holds: 

Q~:(z',a) QT.(Z, a) + K(Cj,T(j, I», (2) 

for all z' E S' and a E A, where z E S is the projected state, and K (Cj, T(j, I» is a 
function of the composite task Cj and subtask T(j, I), where Ti = T(j, I). Note that 
K( Cj , T(j, I» is independent of the state and the action. Thus, given solutions of 
the elemental tasks, learning the solution of a composite task with n elemental tasks 
requires learning only the values of the function K for the n different subtasks. A 
proof of Equation 2 is given in Singh (1992). 
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Figure 1: The CQ-Learning Architecture (CQ-L). This figure is adapted from Jacobs 
et al. (1991). See text for details. 

Equation 2 is based on the assumption that the decomposition of the composite 
tasks is known. In the next Section, I present a modular architecture and learning 
algorithm that simultaneously discovers the decomposition of a composite task and 
implements Equation 2. 

4 CQ-L: CQ-LEARNING ARCHITECTURE 

Jacobs (1991) developed a modular connectionist architecture that performs task 
decomposition. Jacobs's gating architecture consists of several expert networks and 
a gating network that has an output for each expert network. The architecture 
has been used to learn multiple non-sequential tasks within the supervised learning 
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Table 1: Tasks. Tasks Tl, T2, and T3 are elemental tasks; tasks G l , G2 , and G3 

are composite tasks. The last column describes the compositional structure of the 
tasks. 

Label Command De.eription Deeompo.ition 
'11 000001 VlS1t A Tl 
T2 000010 VlS1t B T2 
T3 000100 V1S1t C T3 
0 1 001000 VlSlt A and then C 1113 
C2 010000 VlS1t B and then C T2 T3 

C3 100000 V1S1t A, then B and then C T1 T2T3 

paradigm. I extend the modular network architecture to a CQ-Learning architec­
ture (Figure I), called CQ-L, that can learn multiple compositionally-structured 
sequential tasks even when training information required for supervised learning is 
not available. CQ-L combines CQ-learning and the gating architecture to achieve 
transfer of learning by "sharing" the solutions of elemental tasks across multiple 
composite tasks. Only a very brief description of the CQ-L is provided in this 
paper; details are given in Singh (1992) . 

In CQ-L the expert networks are Q-learning networks that learn to approximate 
the Q-values for the elemental tasks. The Q-networks receive as input both the 
current state and the current action. The gating and bias networks (Figure 1) 
receive as input the augmenting bits and the task command used to encode the 
current task being performed by the architecture. The stochastic switch in Figure 1 
selects one Q-network at each time step. CQ-L's output, Q, is the output of the 
selected Q-network added to the output of the bias network. 

The learning rules used to train the network perform gradient descent in the log 
likelihood, L(t), of generating the estimate of the desired Q-value at time t, denoted 
D(t), and are given below: 

8 log L(t) 
qj(t) + oQ 8qj(t) , 

8 log L(t) 
Si(t) + Og 8Si(t) ,and 

b(t) + ob(D(t) - Q(t)), 
where qj is the output of the jt" Q-network, Si is the it" output of the gating 
network, b is the output of the bias network, and 0Q, Ob and Og are learning rate 
parameters. The backpropagation algorithm ( e.g., Rumelhart et al., 1986) was 
used to update the weights in the networks. See Singh (1992) for details. 

5 NAVIGATION TASK 

To illustrate the utility of CQ-L, I use a navigational test bed similar to the one used 
by Bachrach (1991) that simulates a planar robot that can translate simultaneously 
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Figure 2: Navigation Testbed. See text for details. 

and independently in both ~ and y directions. It can move one radius in any 
direction on each time step. The robot has 8 distance sensors and 8 gray-scale 
sensors evenly placed around its perimeter. These 16 values constitute the state 
vector. Figure 2 shows a display created by the navigation simulator. The bottom 
portion of the figure shows the robot's environment as seen from above. The upper 
panel shows the robot's state vector. Three different goal locations, A, B, and C, 
are marked on the test bed. The set of tasks on which the robot is trained are shown 
in Table 1. The elemental tasks require the robot to go to the given goal location 
from a random starting location in minimum time. The composite tasks require the 
robot to go to a goal location via a designated sequence of subgoallocations. 

Task commands were represented by standard unit basis vectors (Table 1), and thus 
the architecture could not "parse" the task command to determine the decomposi­
tion of a composite task. Each Q-network was a feedforward connectionist network 
with a single hidden layer containing 128 radial basis units. The bias and gating 
networks were also feedforward nets with a single hidden layer containing sigmoid 
units. For all ~ E S U Sf and a E A, c(~, a) = -0.05. ri(~) = 1.0 only if ~ is the 
desired final state of elemental task Ii, or if ~ E Sf is the final state of composite 
task Cii ri(~) = 0.0 in all other states. Thus, for composite tasks no intermediate 
payoff for successful completion of subtasks was provided. 

6 SIMULATION RESULTS 

In the simulation described below, the performance of CQ-L is compared to the 
performance of a "one-for-one" architecture that implements the "learn-each-task­
separately" strategy. The one-for-one architecture has a pre-assigned distinct net-
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work for each task, which prevents transfer of learning. Each network of the one­
for-one architecture was provided with the augmented state. 

,oo - ... 
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Figure 3: Learning Curves for Multiple tasks. 

Both CQ-L and the one-for-one architecture were separately trained on the six 
tasks T1 , T2, T3 , ClI C2 , and C3 until they could perform the six tasks optimally. 
CQ-L contained three Q-networks, and the one-for-one architecture contained six 
Q-networks. For each trial, the starting state of the robot and the task identity 
were chosen randomly. A trial ended when the robot reached the desired final state 
or when there was a time-out. The time-out period was 100 for the elemental tasks, 
200 for C1 and C2 , and 500 for task C3 • The graphs in Figure 3 show the number 
of actions executed per trial. Separate statistics were accumulated for each task. 

The rightmost graph shows the performance of the two architectures on elemental 
task TI. Not surprisingly, the one-for-one architecture performs better because 
it does not have the overhead of figuring out which Q-network to train for task 
T1 . The middle graph shows the performance on task C I and shows that the CQ­
L architecture is able to perform better than the one-for-one architecture for a 
composite task containing just two elemental tasks. The leftmost graph shows the 
results for composite task C3 and illustrates the main point of this paper. The one­
for-one architecture is unable to learn the task, in fact it is unable to perform the 
task more than a couple of times due to the low probability of randomly performing 
the correct task sequence. 

This simulation shows that CQ-L is able to learn the decomposition of a composite 
task and that compositional learning, due to transfer of training across tasks, can 
be faster than learning each composite task separately. More importantly, CQ-L 
is able to learn to solve composite tasks that cannot be solved using traditional 
schemes. 

7 DISCUSSION 

Learning to solve MDTs with large state sets is difficult due to the sparseness of the 
evaluative information and the low probability that a randomly selected sequence 
of actions will be optimal. Learning the long sequences of actions required to solve 
such tasks can be accelerated considerably if the agent has prior knowledge of useful 
subsequences. Such subsequences can be learned through experience in learning to 
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solve other tasks. In this paper, I define a class of MOTs, called composite MOTs, 
that are structured as the temporal concatenation of simpler MOTs, called elemen­
tal MOTs. I present CQ-L, an architecture that combines the Q-Iearning algorithm 
of Watkins (1989) and the modular architecture of Jacobs et al. (1991) to achieve 
transfer of learning by sharing the solutions of elemental tasks across multiple com­
posite tasks. Given a set of composite and elemental MOTs, the sequence in which 
the learning agent receives training experiences on the different tasks determines the 
relative advantage of CQ-L over other architectures that learn the tasks separately. 
The simulation reported in Section 6 demonstrates that it is possible to train CQ-L 
on intermixed trials of elemental and composite tasks. Nevertheless, the ability of 
CQ-L to scale well to complex sets of tasks will depend on the choice of the training 
sequence. 
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