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Abstract 

A network model with temporal sequencing and state-dependent modula­
tory features is described. The model is motivated by neurocognitive data 
characterizing different states of waking and sleeping. Computer studies 
demonstrate how unique states of sequencing can exist within the same 
network under different aminergic and cholinergic modulatory influences. 
Relationships between state-dependent modulation, memory, sequencing 
and learning are discussed. 

1 INTRODUCTION 

Models of biological information processing often assume only one mode or state 
of operation. In general, this state depends upon a high degree of fidelity or mod­
ulation among the neural elements. In contrast, real neural networks often have 
a. repertoire of processing states that is greatly affected by the relative balances of 
various neuromodulators (Selverston, 1988; Harris-Warrick and Marder, 1991). One 
area where changes in neuromodulation and network behavior are tightly and dra­
matically coupled is in the sleep-wake cycle (Hobson and Steriade, 1986; Mamelak 
and Hobson, 1989). This cycle consists of three main states: wake, non-rapid eye 
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movement (NREM) sleep and rapid eye movement (REM) sleep. Each state is char­
acterized by a unique balance of monoaminergic and cholinergic neuromodulation 
(Hobson and Steriade, 1986; figure 1). In humans, each state also has character­
istic cognitive sequencing properties (Foulkes, 1985; Hobson, 1988; figure 1). An 
integration and better understanding of the complex relationships between neuro­
modulation and information sequencing are desirable from both a computational 
and a neurophysiological perspective. In this paper, we present an initial approach 
to this difficult neurocognitive problem using a network model. 
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Figure 1: Overview of the three state model which attempts to integrate aspects of 
neuromodulation and cognitive sequencing. The aminergic and cholinergic systems 
are important neuromodulators that filter and amplify, as opposed to initiating or 
carrying, distributed information embedded as memories (eg. A1, A2, A3) in neural 
networks. In the wake state, a relative aminergic dominance exists and the asso­
ciated network sequencing is logical and progressive. For example, the sequence 
A1 -+ A2 transitions to B1 -+ B2 when an appropriate input (eg. B1) is present 
at a certain time. The NREM state is characterized by an intermediate aminergic­
to-cholinergic ratio correlated with ruminative and perseverative sequences. Unex­
pected or "bizarre" sequences are found in the REM state, wherein phasic choliner­
gic inputs dominate and are prominent in the ponto-geniculo-occipital (PGO) brain 
areas. Bizarreness is manifest by incongruous or mixed memories, such as A2/ B1, 
and sequence discontinuities, such as A2 -+ A2/ B1 -+ B2, which may be associated 
with PGO bursting in the absence of other external input. 
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2 AMINERGIC AND CHOLINERGIC 
NEUROMODULATION 

As outlined in figure 1, there are unique correlations among the aminergic and 
cholinergic systems and the forms of information sequencing that exist in the states 
of waking and NREM and REM sleep. The following brief discussion, which un­
doubtably oversimplifies the complicated and widespread actions of these systems, 
highlights some basic and relevant principles. Interested readers are referred to the 
review by Hobson and Steriade (1986) and the article by Hobson et al. in this 
volume for a more detailed presentation. 

The biogenic amines, including norepinephrine, serotonin and dopamine, have 
been implicated as tonic regulators of the signal-to-noise ratio in neural networks 
(eg. Mamelak and Hobson, 1989). Increasing (decreasing) the amount of aminergic 
modulation improves (worsens) network fidelity (figure 2a). A standard means of 
modeling this property is by a stochastic or gain factor, analogous to the well-known 
Boltzmann factor f3 = l/kT, which is present in the network updating rule. 

Complex neuromodulatory effects of acetylcholine depend upon the location and 
types of receptors and channels present in different neurons. One main effect is 
facilitatory excitation (figure 2b). Mamelak and Hobson (1989) have suggested 
how the phasic release of acetylcholine, involving the bursting of PGO cells in the 
brainstem, coupled with tonic aminergic demodulation, could induce bifurcations 
in information sequencing at the network level. The model described in the next 
section sets out to test this notion. 
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Figure 2: (a) Plot of neural firing probability as a function of the membrane proten­
tial, h, relative to threshold, 9, for values of aminergic modulation f3 of 0.5, 1.0, 1.5 
and 3.0. (b) Schematic diagram of cholinergic facilitation, where EPSPs of magni­
tude 6 only induce a change in firing activity if h is initially in the range (9 - 6, 9). 
Modified from Mamelak and Hobson (1989). 
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3 ASSOCIATIVE SEQUENCING NETWORK 

There are several ways to approach the problem of modeling modulatory effects on 
temporal sequencing. We have chosen to commence with an associative network 
that is an extension of the work on models resembling elementary motor pattern 
generators (Kleinfeld, 1986; Sompolinsky and Kanter, 1986; Gutfreund and Mezard, 
1988). We consider it to be significant that recent data on brainstem control systems 
show an overlap between sleep-wake regulators and locomotor pattern generators 
(Garcia-Rill et al., 1990). 

The network consists of N neural elements with binary values S, = ±1, i = 1, .'" N, 
corresponding to whether they are firing or not firing. The elements are linked 
together by two kinds of a priori learned synaptic connections. One kind, 

p 

JH) = ~ I: ere;, i:/; j, (1) 
#,=1 

encodes a set of p uncorrelated patterns {er}[~l! J.L = 1, ... ,p, where each er takes 
the value ±l with equal probabilities. These patterns correspond to memories that 
are stable until a transition to another memory is made. Transitions in a sequence 
of memories J.L = 1 -+ 2 -+ ... -+ q < p are induced by a second type of connection 

9-1 
J~~) = ~ "c~+lc~. 

'3 N L...J Ii., 1i.3 (2) 
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Here, ~ is a relative weight of the connection types. The average time spent in a 
memory pattern before transitioning to the next one in a sequence is T. At time t, 
the membrane potential is given by 

N 

h,(t) = ~ [IN) Sj(t) + J,~') Sj(t - T) 1 + 6,(t) + 1;(t). (3) 

The two terms contained in the brackets reflect intrinsic network interactions, while 
phasic PGO effects are represented by the 6,(t). External inputs, other than PGO 
inputs, to ~(t) are denoted by Ii(t). Dynamic evolution of the network follows the 
updating rule 

with probability { 1 + .'F'/I[h«.)-•• (.)) } -1 (4) 

In this equation, the amount of aminergic-like modulation is parameterized by {3. 
While updating could be done serially, a parallel dynamic process is chosen here for 
convenience. In the absence of external and PGO-like inputs, and with {3 > 1.0, 
the dynamics have the effect of generating trajectories on an adiabatically varying 
hyper surface that molds in time to produce a path from one basin of attraction 
to another. For {3 < 1.0, the network begins to lose this property. Lowering {3 
mostly affects neural elements close to threshold, since the decision to change firing 
activity centers around the threshold value. However, as {3 decreases, fluctuations 
in the membrane potentials increase and a larger fraction of the neural elements 
remain, on average, near threshold. 
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4 SIMULATION RESULTS 

A network consisting of N = 50 neural elements was examined wherein p = 6 
memory patterns (A1, A2, A3, B1, B2 and B3) were chosen at random 
(pi N = 0.12). These memories were arranged into two loops, A and B, accord­
ing to equation (2) such that the cyclic sequences A1 --+ A2 --+ A3 --+ A1 --+ ••• and 
B1 --+ B2 --+ B3 --+ B1 --+ ••• were stored in loops A and B, respectively. For sim­
plicity, c5i(t) = c5(t) and 9.(t) = 0, 'Vi. The transition parameters were set to A = 2.5 
and T = 8 for all the simulations to ensure reliable pattern generation under fully 
modulated conditions (large /3, c5 = OJ Somplinsky and Kanter, 1986). Variations in 
/3, c5(t) and I.(t) delineated the individual states that were examined. 

In the model wake state, where there was a high degree ofaminergic-like modulation 
(eg. /3 = 2.0), the network generated loops of sequential memories. Once cued into 
one of the two loops, the network would remain in that loop until an external input 
caused a transition into the other loop (figure 3). 
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Figure 3: Plot of overlap as a function of time for each of the six memories A1, 
A2, A3, B1, B2, B3 in the simulated wake state. The overlap is a measure of the 
normalized Hamming distance between the instantaneous pattern of the network 
and a given memory. f3 = 2.0, c5 = 0, A = 2.5, T = 8. The network is cued in pattern 
A1 and then sequences through loop A. At t = 75, pattern B1 is inputted to the 
network and loop B ensues. The dotted lines highlight the transitions between 
different memory patterns. 
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Figure 4: Graph of overlap VB. time for each of the six memories in the simulated 
NREM sleep state. {3 = 1.1, 6 = 0, A = 2.5, T = 8. Initially, the network is cued 
in pattern Al and remains in loop A. Considerable fluctuations in the overlaps are 
present and external inputs are absent. 

As {3 was decreased (eg. (3 = 1.1), partially characterizing conditions of a model 
NREM state, sequencing within a loop was observed to persist (figure 4). However, 
decreased stability relative to the wake state was observed and small perturbations 
could cause disruptions within a loop and occasional bifurcations between loops. 
Nevertheless, in the absence of an effective mechanism to induce inter-loop transi­
tions, the sequences were basically repetitive in this state. 

For small f3 (eg. 0.8 < f3 < 1.0) and various PGO-like activities within the simulated 
REM state, a diverse and rich set of dynamic behaviors was observed, only some of 
which are reported here. The network was remarkably sensitive to the timing of the 
PGO type bursts. With f3 = 1.0, inputs of 6 = 2.5 units in clusters of 20 time steps 
occurring with a frequency of approximately one cluster per 50 time steps could 
induce the following: (a) no or little effect on identifiable intra-loop sequencing; 
(b) bifurcations between loops; (c) a change from orderly intra-loop sequencing 
to apparent disorder;l(d) a change from apparent disorder to orderly progression 
within a single loop ("defibrillation" effect); (e) a change from a disorderly pattern 
to another disorderly pattern. An example of transition types (c) and (d), with the 
overall effect of inducing a bifurcation between the loops, is shown in figure 5. 

10n detailed inspection, the apparent disorder actually revealed several sequences in 
loops A and/or B running out of phase with relative delays generally less than T. 
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In general, lower intensity (eg. 2.0 to 2.5 units), longer duration (eg. >20 time steps) 
PGO-like bursting was more effective in inducing bifurcations than higher intensity 
(eg. 4.0 units), shorter duration (eg. 2 time steps) bursts. PGO induced bifurcations 
were possible in all states and were associated with significant populations of neural 
elements that were below, but within 6 units of threshold. 
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Figure 5: REM sleep state plot of overlap VB. time for each of the six memories. 
f3 = 1.0, 6 = 2.5, A = 2.5, T = 8. The network sequences progressively in loop 
A until a cluster of simulated PGO bursts (asterisks) occurs lasting 40 < t < 60. 
A complex output involving alternating sequences from loop A and loop B results 
(note dotted lines). A second PGO burst cluster during the interval 90 < t < 110 
yields an output consisting of a single loop B sequence. Over the time span of the 
simulation, a bifurcation from loop A to loop B has been induced. 

5 STATE-DEPENDENT LEARNING 

The connections set up by equations (1) and (2) are determined a priori using 
a standard Hebbian learning algorithm and are not altered during the network 
simulations. Since neuromodulators, including the monoamines norepinephrine and 
serotonin, have been implicated as essential factors in synaptic plasticity (Kandel 
et al., 1987), it seems reasonable that state changes in modulation may also affect 
changes in plasticity. This property, when superimposed on the various sequencing 
features of a network, may yield possibly novel memory and sequence formations, 
associations and perhaps other unexamined global processes. 
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6 CONCLUSIONS 

The main finding of this paper is that unique states of information sequencing 
can exist within the same network under different modulatory conditions. This 
result holds even though the model makes significant simplifying assumptions about 
the neurophysiological and cognitive processes motivating its construction. Several 
observations from the model also suggest mechanisms whereby interactions between 
the aminergic and cholinergic systems can give rise to sequencing properties, such as 
discontinuities, in different states, especially REM sleep. Finally, the model provides 
a means of investigating some of the complex and interesting relationships between 
modulation, memory, sequencing and learning within and between different states. 

AcknowledgeInents 

Supported by NIH grant MH 13,923, the HMS/MMHC Research & Education Fund, 
the Livingston, Dupont-Warren and McDonnell-Pew Foundations, DARPA under 
ONR contract N00014-85-K-0124, the Sloan Foundation and Whitaker College. 

References 

Foulkes D (1985) Dreaming: A Cognitive-Psychological Analysis. Hillsdale: Erl­
baum. 

Garcia-Rill E, Atsuta Y, Iwahara T, Skinner RD (1990) Development of brainstem 
modulation of locomotion. Somatosensory Motor Research 7 238-239. 

Gutfreund H, Mezard M (1988) Processing of temporal sequences in neural net­
works. PhYI Rev Lett 61 235-238. 

Harris-Warrick RM, Marder E (1991) Modulation of neural networks for behavior. 
Annu Rev Neurolci 14 39-57. 

Hobson JA (1988) The Dreaming Brain. New York: Basic. 

Hobson JA, Steriade M (1986) Neuronal basis of behavioral state control. In: 
Mountcastle VB (ed) Handbook of Physiology - The Nervous System, Vol IV. 
Bethesda: Am Physiol Soc, 701-823. 

Kandel ER, Klein M, Hochner B, Shuster M, Siegelbaum S, Hawkins R, et al. (1987) 
Synaptic modulation and learning: New insights into synaptic transmission from 
the study of behavior. In: Edelman GM, Gall WE, Cowan WM (eds) Synaptic 
Function. New York: Wiley, 471-518. 

Kleinfeld D (1986) Sequential state generation by model neural networks. Proc Naa 
Acad Sci USA 83 9469-9473. 

Mamelak AN, Hobson JA (1989) Dream bizarrenes as the cognitive correlate of 
altered neuronal behavior in REM sleep. J Cog Neurolci 1(3) 201-22. 

Selverston AI (1988) A consideration of invertebrate central pattern generators as 
computational data bases. Neural Networks 1 109-117. 

Sompolinsky H, Kanter I (1986) Temporal association in asymmetric neural net­
works. Phys Rev Lett 57 2861-2864. 


