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Abstract 

We present the information-theoretic derivation of a learning algorithm 
that clusters unlabelled data with linear discriminants. In contrast to 
methods that try to preserve information about the input patterns, we 
maximize the information gained from observing the output of robust 
binary discriminators implemented with sigmoid nodes. We deri ve a local 
weight adaptation rule via gradient ascent in this objective, demonstrate 
its dynamics on some simple data sets, relate our approach to previous 
work and suggest directions in which it may be extended. 

1 INTRODUCTION 

Unsupervised learning algorithms may perform useful preprocessing functions by pre­
serving some aspects of their input while discarding others. This can be quantified as 
maximization of the information the network's output carries about those aspects of the 
input that are deemed important. 

(Linsker, 1988) suggests maximal preservation of information about all aspects of the input. 
This In/omax principle provides for optimal reconstruction of the input in the face of noise 
and resource limitations. The I-max algorithm (Becker and Hinton, 1992), by contrast, 
focusses on coherent aspects of the input, which are extracted by maximizing the mutual 
information between networks looking at different patches of input. 

Our work aims at recoding clustered data with adaptive discriminants that selectively 
emphasize gaps between clusters while collapsing patterns within a cluster onto near-
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identical output representations. We achieve this by maximizing in/ormation gain -
the information gained through observation of the network's outputs under a probabilistic 
in terpretati on. 

2 STRATEGY 

Consider a node that performs a weighted summation on its inputs i and squashes the 
resulting net input y through a sigmoid function f : 

z = f(y), where f(y) = 1 +le_Y and y = tV · i . (1) 

Such a sigmoid node can be regarded as a "soft" discriminant: with a large enough weight 
vector, the output will essentially be binary, but smaller weights allow for the expression of 
varying degrees of confidence in the discrimination. 

To make this notion more precise, consider y a random variable with bimodal distribution, 
namely an even mixture of two Gaussian distributions. Then if their means equal ± half 
their variance, z is the posterior probability for discriminating between the two source 
distributions (Anderson, 1972). 

This probabilitstic interpretation of z can be used to design a learning algorithm that seeks 
such bimodal projections of the input data. In particular, we search for highly informa­
tive discriminants by maximizing the information gained about the binary discrimination 
through observation of z. This binary in/ormation gain is given by 

dH(z) = H(i) - H(z), (2) 

where H (z) is the entropy of z under the above interpretation, and i is an estimate of z 
based on prior knowledge. 

3 RESULTS 

3.1 THE ALGORITHM 

In the Appendix, we present the derivation of a learning algorithm that maximizes binary 
information gain by gradient ascent. The resulting weight update rule is 

dw 0( f'(y) i (y - fI), (3) 

where fI, the estimated net input, must meet certain conditions1 (see Appendix). The weight 
change dictated by (3) is thus proportional to the product of three factors: 

• the derivative of the Sigmoid squashing function, 

• the presynaptic input i, and 

• the difference between actual and anticipated net input. 

1 In what follows, we have successfully used estimators that merely approximate these conditions. 
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Figure I: Phase plot of ll.y against net input y for y = {-3, -2, ... 3}. See text for details. 

3.2 SINGLE NODE DYNAMICS 

For a single, isolated node, we use (y), the average net input over a batch of input patterns, 
as estimator for y. The behavior of our algorithm in this setting is best understood from 
a phase plot as shown in Figure I, where the change in net input resulting from a weight 
change according to (3) is graphed against the net input that causes this weight change. 

Curves are plotted for seven different values of y. The central curve (y = 0) is identical 
to that of the straightforward Hebb rule for sigmoid nodes: both positive and negative net 
inputs are equally amplified until they reach saturation. For non-zero values of y, however, 
the curves become asymmetric: positive y favor negative changes ll.y and vice versa. For 
y = (y), it is easy to see that this will have the effect of centering net inputs around zero. 

The node will therefore converge to a state where its output is one for half of the input 
patterns, and zero for the other half. Note that this can be achieved by any sufficiently large 
weight vector, regardless of its direction! However, since simple gradient ascent is both 
greedy and local in weight space, starting it from small random initial weights is equivalent 
to a bias towards discriminations that can be made confidently with smaller weight vectors. 

To illustrate this effect, we have tested a single node running our algorithm on a set of 
vowel formant frequency data due to (Peterson and Barney, 1952). The most prominent 
feature of this data is a central gap that separates front from back vowels; however, this 
feature is near-orthogonal to the principal component of the data and thus escapes detection 
by standard Hebbian learning rules. 

Figure 2 shows the initial, intermediate and final phase of this experiment, using a visu­
alization technique suggested by (Munro, 1992). Each plot shows the pre-image of zero 
net input superimposed on a scatter plot of the data set in input space. The two flanking 
lines delineate the "active region" where the sigmoid is not saturated, and thus provide an 
indication of weight vector size. 

As demonstrated in this figure, our algorithm is capable of proceeding smoothly from a 
small initial weight vector that responds in principal component direction to a solution 
which uses a large weight vector in near-orthogonal direction to successfully discriminate 
between the two data clusters. 
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Figure 2: Single node discovers distinction between front and back vowels in unlabelled data 
set of 1514 multi-speaker vowel utterances (Peterson and Barney, 1952). Superimposed on 
a scatter plot of the data are the pre-images of Y = 0 (solid center line) and Y = ±1,31696 
(flanking lines) in input space. Discovered feature is far from principal component direction. 

3.3 EXTENSION TO A LAYER OF NODES 

A learning algorithm for a single sigmoid node has of course only limited utility. When 
extending it to a layer of such nodes, some form oflateral interaction is needed to ensure that 
each node makes a different binary discrimination. The common technique of introducing 
lateral competition for activity or weight changes would achieve this only at the cost of 
severely distorting the behavior of our algorithm. 

Fortunately our framework is flexible enough to accommodate lateral differentiation in a 
less intrusive manner: by picking an estimator that uses the activity of every other node in 
the layer to make its prediction, we force each node to maximize its information gain with 
respect to the entire layer. To demonstrate this technique we use the linear second-order 
estimator 

Yi = (Yi) + L (Yj - (Yj)) (}ij 

j#-i 

(4) 

to predict the net input Yi of the ith node in the layer, where the (.) operator denotes 
averaging over a batch of input patterns, and {}ij is the empirical correlation coefficient 

(5) 

Figure 3 shows a layer of three such nodes adapting to a mixture of three Gaussian dis­
tributions, with each node initially picking a different Gaussian to separate from the other 
two. After some time, all three discriminants rotate in concert so as to further maximize 
information gain by splitting the input data evenly. Note that throughout this process, the 
nodes always remain well-differentiated from each other. 

For most initial conditions, however, the course of this experiment is that depicted in 
Figure 4: two nodes discover a more efficient way to discriminate between the three input 
clusters, to the detriment of the third. The latecomer repeatedly tries to settle into one of 
the gaps in the data, but this would result in a high degree of predictability. Thus the node 
with the shortest weight vector and hence most volatile discriminant is weakened further, 
its weight vector all but eliminated in an effective demonstration of Occam's razor. 
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Figure 3: Layer of three nodes adapts to a mixture of three Gaussian distributions. In the 
final state, each node splits the input data evenly. 

; 
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Figure 4: Most initial conditions, however, lead to a minimal solution involving only two 
nodes. The weakest node is "crowded out" by Occam's razor, its weight vector reduced to 
near-zero length. 

4 DISCUSSION 

4.1 RELATED WORK 

By maximizing the difference of actual from anticipated response, our algorithm makes 
binary discriminations that are highly informative with respect to clusters in the input. The 
weight change in proportion to a difference in acti vity is reminiscent of the covariance rule 
(Sejnowski, 1977) but generalizes it in two important respects: 

• it explicitly incorporates a sigmoid nonlinearity, and 

• fj need not necessarily be the average net input. 

Both of these are critical improvements: the first allows the node to respond only to inputs in 
its non-saturated region, and hence to learn local features in projections other than along the 
principal component direction. The second provides a convenient mechanism for extending 
the algorithm by incorporating additional information in the estimator. 

We share the goal of seeking highly informative, bimodal projections of the input with the 
Bienenstock-Cooper-Munro (BCM) algorithm (Bienenstock et al., 1982; Intrator, 1992). 
A critical difference, however, is that BCM uses a complex, asymmetric nonlinearity 
that increases the selectivity of nodes and hence produces a localized, l-of-n recoding 
of the input, whereas our algorithm makes symmetric, robust and independent binary 
discriminations. 
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4.2 FUTURE DIRECTIONS 

Since the learning algorithm described here has demonstrated flexibility and efficiency in our 
initial experiments, we plan to scale it up to address high-dimensional, real-world problems. 
The algorithm itself is likely to be further extended and improved as its applications grow 
more demanding. 

For instance, although the size of the weight vector represents commitment to a discriminant 
in our framework, it is not explicitly controlled. The dynamics of weight adaptation happen 
to implement a reasonable bias in this case, but further refinements may be possible. Other 
priors implicit in our approach - such as the preference for splitting the data evenly -
could be similarly relaxed or modified. 

Another attractive generalization of this learning rule would be to implement nonlinear 
discriminants by backpropagating weight derivatives through hidden units. The dynamic 
stability of our algorithm is a Significant asset for its expansion into an efficient unsupervised 
multi-layer network. 

In such a network, linear estimators are no longer sufficient to fully remove redundancy be­
tween nodes. In his closely related predictability minimization architecture, (Schmidhuber, 
1992) uses backpropagation networks as nonlinear estimators for this purpose with some 
success. 

Since the notion of estimator in our framework is completely general, it may combine 
evidence from multiple, disparate sources. Thus a network running our algorithm can 
be trained to complement a heterogeneous mix of pattern recognition methods by maxi­
mizing information gain relative to an estimator that utilizes all such available sources of 
information. This flexibility should greatly aid the integration of binary information gain 
optimization into existing techniques. 

APPENDIX: MATHEMATICAL DERIVATION 

We derive a straightforward batch learning algorithm that performs gradient ascent in the 
binary information gain objective. On-line approximations may be obtained by using 
exponential traces in place of the batch averages denoted by the (.) operator. 

CONDITIONS ON THE ESTIMATOR 

To eliminate the deri vati ve term from ( 11 d) below we require that the estimator i be 

• unbiased: (i) = (z),and 

• honest: tz i = tz (i) . 

The honesty condition ensures that the estimator has access to the estimated variable only 
on the slow timescale of batch averaging, thus eliminating trivial "solutions" such as i = z. 

For an unbiased and honest estimator, 

oi 0 0 (oz) oz = oz (i) = oz (z) = oz = 1. (6) 
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BINARY ENTROPY AND ITS DERIVATIVE 

The enuopy of a binary random variable X as a function of z = Pr( X = 1) is given by 

H(z) = -zlogz - (1- z)log(l- z); (7) 

its derivative with respect to z is 

o 
oz H(z) = log(l - z) -log z. (8) 

Since z in our case is produced by the sigmoid function f given in (I), this conveniently 
simplifies to 

o 
-H(z) = -yo 
oz 

GRADIENT ASCENT IN INFORMATION GAIN 

The information dH gained from observing the output z of the discriminator is 

dH(z) = H(i) - H(z), 

(9) 

(10) 

where z is an estimate of z based on prior knowledge. We maximize dH(z) by batched 
gradient ascent in weight space: 

dill ex (o~ dH(Z») (Ila) 

( 0: . ~ [H(i) - H(Z»)) 
ow oz 

(lIb) 

( z (1 - z) :~ [~ ~ . :i H (i) - :Z H (z ) 1 ) (llc) 

( z (1 - z) i (Y - ~! . y) ) , (lId) 

where estimation of the node's output z has been replaced by that of its net input y. 
Substitution of (6) into (lId) yields the binary information gain optimization rule 

dill ex (z (1 - z) i(y - y»). (12) 
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