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Abstract 

While exploring to find better solutions, an agent performing on­
line reinforcement learning (RL) can perform worse than is accept­
able. In some cases, exploration might have unsafe, or even catas­
trophic, results, often modeled in terms of reaching 'failure' states 
of the agent's environment. This paper presents a method that uses 
domain knowledge to reduce the number of failures during explo­
ration. This method formulates the set of actions from which the 
RL agent composes a control policy to ensure that exploration is 
conducted in a policy space that excludes most of the unacceptable 
policies. The resulting action set has a more abstract relationship 
to the task being solved than is common in many applications of 
RL. Although the cost of this added safety is that learning may 
result in a suboptimal solution, we argue that this is an appropri­
ate tradeoff in many problems. We illustrate this method in the 
domain of motion planning. 

"'This work was done while the first author was finishing his Ph.D in computer science 
at the University of Massachusetts, Amherst. 
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An agent using reinforcement learning (Sutton et al., 1991; Barto et al., to appear) 
(RL) to approximate solutions to optimal control problems has to search, or explore, 
to improve its policy for selecting actions. Although exploration does not directly 
affect performance (Moore & Atkeson, 1993) in off-line learning with a model of 
the environment, exploration in on-line learning can lead the agent to perform 
worse than is acceptable. In some cases, exploration might have unsafe, or even 
catastrophic, results, often modeled in terms of reaching 'failure' states of the agent's 
environment. To make on-line RL more practical, especially if it involves expensive 
hardware, task-specific minimal levels of performance should be ensured during 
learning, a topic not addressed by prior RL research. 

Although the need for exploration cannot be entirely removed, domain knowledge 
can sometimes be used to define the set of actions from which the RL agent composes 
a control policy so that exploration is conducted in a space that excludes most of 
the unacceptable policies. We illustrate this approach using a simulated dynamic 
mobile robot in two different environments. 

1 Closed-loop policies as actions 

RL agents search for optimal policies in a solution space determined in part by 
the set of actions available to the agent. With a few exceptions (e.g., Mahadevan 
& Connell, 1990; Singh, 1992), researchers have formulated RL tasks with actions 
that are primitive in the sense that they are low-level, are available in very state, 
are executed open-loop, and last a single time-step. We propose that this is an 
arbitrary, and self-imposed, restriction, and that in general the set of actions can 
have a much more abstract relationship to the problem being solved. Specifically, 
what are considered 'actions' by the RL algorithm can themselves be closed-loop 
control policies that meet important subgoals of the task being solved. 

In this paper, the following general advantages afforded by using closed-loop policies 
as actions are demonstrated in the domain of motion planning: 

1. It is possible to design actions to meet certain hard constraints so that RL 
maintains acceptable performance while simultaneously improving perfor­
mance over time. 

2. It is possible to design actions so that the action space for the learning 
problem has fewer dimensions than the actual dimension of the physical 
action space. 

The robustness and greatly accelerated learning resulting from the above factors 
can more than offset the cost of designing the actions. However, care has to be 
taken in defining the action space to ensure that the resulting policy space contains 
at least one policy that is close to optimal. 

2 RL with Dirichlet and Neumann control policies 

The motion planning problem arises from the need to give an autonomous robot 
the ability to plan its own motion, i.e., to decide what actions to execute in order 
to achieve a task specified by initial and desired spatial arrangements of objects. 
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First consider geometric path planning, i.e., the problem of finding safe paths for a 
robot with no dynamical constraints in an environment with stationary obstacles . 
A safe path in our context is one that avoids all obstacles and terminates in a 
desired configuration. Connolly (1992) has developed a method that generates safe 
paths by solving Laplace's equation in configuration space with boundary conditions 
determined by obstacle and goal configurations (also see, Connolly & Grupen, 1993). 
Laplace's equation is the partial differential equation 

n {j2ljJ 
V2ljJ L {)x~ = 0, (1) 

i=l I 

whose solution is a harmonic function, ljJ, with no interior local minima. In practice, 
a finite difference approximation to Equation 1 is solved numerically via Gauss Sidel 
relaxation on a mesh over configuration space. Safe paths are generated by gradient 
descent on the resulting approximate harmonic function. In the general motion 
planning problem, we are interested in finding control policies that not only keep 
the robot safe but also extremize some performance criterion, e.g., minimum time, 
minimum jerk, etc. 

Two types of boundary conditions, called Dirichlet and Neumann boundary condi­
tions, give rise to two different harmonic functions , <I> D and <I> N, that generate dif­
ferent types of safe paths . Robots following paths generated from <I> D tend to be re­
pelled perpendicularly from obstacles. In contrast, robots following paths generated 
from <I>N tend to skirt obstacles by moving parallel to their boundaries. Although 
the state space in the motion planning problem for a dynamic robot in a planar 
environment is {x, x, y, if}, harmonic functions are derived in two-dimensional posi­
tion space. These functions are inexpensive to compute (relative to the expense of 
solving the optimal control problem) because they are independent of the robot dy­
namics and criterion of optimal control. The closed-loop control policies that follow 
the gradient of the Dirichlet or Neumann solutions, respectively denoted 1rD and 
1rN, are defined approximately as follows: 1rD(S) = V<I>D(§), and 1rN(S) = V<I>N(§), 
where § is the projection of the state s onto position space .1 

Instead of formulating the motion planning problem as a RL task in which a control 
policy maps states into primitive control actions, consider the formulation in which 
a policy maps each state s to a mixing parameter k( s) so that the actual action is 
: [1- k(S)]1rD(S) + [k(S)]1rN(S) , where 0 ~ k(s) ~ 1. Figure 1B shows the structure 
of this kind of policy. In Appendix B, we present conditions guaranteeing that for 
a robot with no dynamical constraints, this policy space contains only acceptable 
policies, i.e., policies that cause the robot to reach the goal configuration without 
contacting an obstacle. Although this guarantee does not strictly hold when the 
robot has dynamical constraints, e.g., when there are bounds on acceleration, this 
formulation still reduces the risk of unacceptable behavior. 

3 Simulation Results 

In this paper we present a brief summary of simulation results for the two envi­
ronments shown in Figures 2A and 3A. See Singh (1993) for details. The first 

1 In practice, the gradients of the harmonic functions act as reference signals to a PD­
controller . 
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environment consists of two rooms connected by a corridor. The second environ­
ment is a horseshoe-shaped corridor. The mobile robot is simulated as a unit-mass 
that can accelerate in any direction. The only dynamical constraint is a bound on 
the maximum acceleration. 
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Figure 1: Q-Iearning Network and Policy Structure. Panel A: 2-layer Connectionist 
Network Used to Store Q-values. Network inversion was used to find the maximum 
Q-value (Equation 2) at any state and the associated greedy action. The hidden 
layer consists of radial-basis units . Panel B: Policy Structure. The agent has to learn 
a mapping from state s to a mixing coefficient 0 < k( s) < 1 that determines the 
proportion in which to mix the actions specifies by the pure Dirichlet and Neumann 
policies. 

The learning task is to approximate minimum time paths from every point inside 
the environment to the goal region without contacting the boundary wall. A rein­
forcement learning algorithm called Q-Iearning (Watkins, 1989) (see Appendix A) 
was used to learn the mixing function, k. Figure lA shows the 2-layer neural net­
work architecture used to store the Q-values. The robot was trained in a series 
of trials, each trial starting with the robot placed at a randomly chosen state and 
ending when the robot enters the goal region. The points marked by stars in Fig­
ures 2A and 3A were the starting locations for which statistics were collected to 
produce learning curves. 

Figures 2B, 2C, 3A and 3B show three robot trajectories from two randomly chosen 
start states; the black-filled circles mark the Dirichlet trajectory (labeled D), the 
white-filled circles mark the Neumann trajectory (labeled N), and the grey-filled 
circles mark the trajectory after learning (labeled Q). Trajectories are shown by 
taking snapshots of the robot at every time step; the velocity of the robot can 
be judged by the spacing between successive circles on the trajectory. Figure 2D 
shows the mixing function for zero-velocity states in the two-room environment, 
while Figure 3C shows the mixing function for zero velocity states in the horseshoe 
environment. The darker the region, the higher the proportion of the Neumann 
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policy in the mixture. In the two-room environment, t.he agent learns to follow 
the Neumann policy in the left-hand room and to follow the Dirichlet policy in the 
right-hand room. 

Figure 2E shows the average time to reach the goal region as a function of the 
number of trials in the two-room environment. The solid-line curve shows the 
performance of the Q-Iearning algorithm. The horizontal lines show the average 
time to reach the goal region for the designated pure policies. Figure 3D similarly 
presents the results for the horseshoe environment. Note that in both cases the 
RL agent learns a policy that is better than either the pure Dirichlet or the pure 
Neumann policies. The relative advantage of the learned policy is greater in the 
two-room environment than in the horseshoe environment . 

On the two-room environment we also compared Q-Iearning using harmonic func­
tions, as described above, with Q-Iearning using primitive accelerations of the mobile 
robot as actions. The results are summarized along three dimensions: a) speed of 
learning: the latter system took more than 20,000 trials to achieve the same level 
of performance achieved by the former in 100 trials, b) safety: the simulated robot 
using the latter system crashed into the walls more than 200 times, and c) asymp­
totic performance: the final solution found by the latter system was 6% better than 
the one found by the former. 

4 Conclusion 

Our simulations show how an RL system is capable of maintaining acceptable per­
formance while simultaneously improving performance over time. A secondary mo­
tivation for this work was to correct the erroneous impression that the proper, if 
not the only, way to formulate RL problems is with low-level actions. Experience 
on large problems formulated in this fashion has contributed to the perception that 
RL algorithms are hopelessly slow for real-world applications. We suggest that a 
more appropriate way to apply RL is as a "component technology" that uses expe­
rience to improve on partial solutions that have already been found through either 
analytical techniques or the cumulative experience and intuitions of the researchers 
themselves. The RL framework is more abstract, and hence more flexible, than 
most current applications of RL would lead one to believe. Future applications of 
RL should more fully exploit the flexibility of the RL framework. 

A Q-learning 

On executing action a in state St at time t, the following update on the Q-value 
function is performed: 

where R( St, a) is the payoff, 0 ::; I ::; 1 is the discount factor, and a is a learning 
rate parameter. See Watkins (1989) for further details. 
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Figure 2: Results for the Two-Room Environment . Panel A: Two-Room Environ­
ment. The stars mark the starting locations for which statistics were computed . 
Panel B: Sample Trajectories from one Starting Location. The black-filled circles 
labeled D show a pure Dirichlet trajectory, the white-filled circles labeled N show a 
pure Neumann trajectory, and the grey-filled circles labeled Q show the trajectory 
after learning. The trajectories are shown by taking snapshots at every time step; 
the velocity of the robot can be judged by the distance between successive points 
on the trajectory. Panel C: Three Sample Trajectories from a Different Starting 
Location. Panel D: Mixing Function Learned by the Q-Iearning Network for Zero 
Velocity States. The darker the region the higher the proportion of the Neumann 
policy in the resulting mixture. Panel E: Learning Curve. The curve plots the time 
taken by the robot to reach the goal region, averaged over the locations marked 
with stars in Panel A, as a function of the number of Q-Iearning trials. The dashed 
line shows the average time using the pure Neumann policy; the dotted line for the 
pure Dirichlet policy; and the solid line for Q-Iearning. The mixed policy formed 
by Q-Iearning rapidly outperforms both pure harmonic function policies. 
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Figure 3: Results for the Horseshoe Environment . Panel A: Horseshoe-Shaped 
Environment. Locations marked with stars are the starting locations for which 
statistics were computed. It also shows sample trajectories from one starting loca­
tion; the black-filled circles marked D show a Dirichlet trajectory, the white-filled 
circles marked N show a Neumann trajectory, and the grey-filled circles marked Q 
show the trajectory after learning. The trajectories are shown by taking snapshots 
at every time step; the velocity of the robot can be judged by the distance between 
successive points on the trajectory. Panel B: Three Sample Trajectories from a 
Different Starting Location. Panel C: Mixing Function Learned by the Q-Iearning 
Network for Zero Velocity States. The darker the region the higher the proportion 
of the Neumann policy in the resulting mixture. Panel D: Learning Curve. The 
curve plots the time taken by the robot to reach the goal region, averaged over the 
locations marked with stars in Panel A, as a function of the number of Q-Iearning 
trials. The dashed line shows the average time for the pure Neumann policy; the 
dotted line for the pure Dirichlet policy; and the solid line for Q-Iearning. Q-Iearning 
rapidly outperforms both pure harmonic function policies. 
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B Safety 

Let L denote the surface whose gradients at any point are given by the closed-loop 
policy under consideration. Then for there to be no minima in L, the gradient of L 
should not vanish in the workspace, i.e., (1- k(S»\7<1>D(S) + k(S)\7<1>N(S) ;/; O. The 
only way it can vanish is if 'Vi 

k(s) 

1- k(s) 
(3) 

where [·Ji is the ith component of vector [.J. The algorithm can explicitly check for 
that possibility and prevent it. Alternatively, note that due to the finite precision 
in any practical implementation, it is extremely unlikely that Equation 3 will hold 
in any state. Also note that 7r( s) for any point s on the boundary will always point 
away from the boundary because it is the convex sum of two vectors, one of which 
is normal to the boundary, and the other of which is parallel to the boundary. 
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