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Abstract 
An approach is presented to learning high dimensional functions in the case 
where the learning algorithm can affect the generation of new data. A local 
modeling algorithm, locally weighted regression, is used to represent the learned 
function. Architectural parameters of the approach, such as distance metrics, are 
also localized and become a function of the query point instead of being global. 
Statistical tests are given for when a local model is good enough and sampling 
should be moved to a new area. Our methods explicitly deal with the case where 
prediction accuracy requirements exist during exploration: By gradually shifting 
a "center of exploration" and controlling the speed of the shift with local pre­
diction accuracy, a goal-directed exploration of state space takes place along the 
fringes of the current data support until the task goal is achieved. We illustrate 
this approach with simulation results and results from a real robot learning a 
complex juggling task. 

1 INTRODUCTION 
Every learning algorithm faces the problem of sparse data if the task to be learned is suf­
ficiently nonlinear and high dimensional. Generalization from a limited number of data 
points in such spaces will usually be strongly biased. If, however, the learning algorithm 
has the ability to affect the creation of new experiences, the need for such bias can be re­
duced. This raises the questions of (1) how to sample data the most efficient, and (2) how 
to assess the quality of the sampled data with respect to the task to be learned. To address 
these questions, we represent the task to be learned with local linear models. Instead of 
constraining the number of linear models as in other approaches, infinitely many local 
models are permitted. This corresponds to modeling the task with the help of (hyper-) 
tangent planes at every query point instead of representing it in a piecewise linear fash­
ion. The algorithm applied for this purpose, locally weighted regression (L WR), stems 
from nonparametric regression analysis (Cleveland, 1979, Muller, 1988, Hardie 1990, 
Hastie&Tibshirani, 1991). In Section 2, we will briefly outline LWR. Section 3 discusses 
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several statistical tools for assessing the quality of a learned linear L WR model, how to 
optimize the architectural parameters of L WR, and also how to detect outliers in the data. 
In contrast to previous work, all of these statistical methods are local, i.e., they depend on 
the data in the proximity of the current query point and not on all the sampled data. A 
simple exploration algorithm, the shifting setpoint algorithm (SSA), is used in Section 4 
to demonstrate how the properties of L WR can be exploited for learning control. The 
SSA explicitly controls prediction accuracy during learning and samples data with the 
help of optimal control techniques. Simulation results illustrate that this method work 
well in high dimensional spaces. As a final example, the methods are applied to a real 
robot learning a complex juggling task in Section 5. 

2 LOCALLY WEIGHTED REGRESSION 
Locally linear models constitute a good compromise between locally constant models 
such as nearest neighbors or moving average and locally higher order models; the former 
tend to introduce too much bias while the latter require fitting many parameters which is 
computationally expensive and needs a lot of data. The algorithm which we explore here, 
locally weighted regression (LWR) (Atkeson, 1992, Moore, 1991, Schaal&Atkeson, 
1994), is closely related to versions suggested by Cleveland et al. (1979, 1988) and 
Farmer&Siderowich (1987). A LWR model is trained by simply storing every experi­
ence as an input/output pair in memory. If an output Y, is to be generated from a given 
input x" the it is computed by fitting a (hyper-) tangent plane at x by means of weight-
d . , 

e regressIOn: 

(1) 

where X is an mx(n+ 1) matrix of inputs to the regression, y the vector of corresponding 
outputs, P(x,) the vector of regression parameters, and W the diagonal mxm matrix of 
weights. The requested Y,results from evaluating the tangent plane at x ,i.e., Y = x~p. 
The elements of W give points which are close to the current query poi~t x, a l~ger in­
fluence than those which are far away. They are determined by a Gaussian kernel: 

w;(x,) = exp( (x; - x,lD(x,)(x; - x,) / 2k(x,)2) (2) 

w; is the weight 'for the i rh data point (xj,Yj) in memory given query point x . The ma­
trix D(x,) weights the contribution of the individual input dimensions, and the factor 
k(x,) determines how local the regression will be. D and k are architectural parameters 
of L WR and can be adjusted to optimize the fit of the local model. In the following we 
will just focus on optimizing k, assuming that D normalizes the inputs and needs no fur­
ther adjustment; note that, with some additional complexity, our methods would also hold 
for locally tuning D. 

3 ASSESSING THE LOCAL FIT 
In order to measure the goodness of the local model, several tests have been suggested. 
The most widely accepted one is leave-one-out cross validation (CV) which calculates the 
prediction error of every point in memory after recalculating (1) without this point 
(Wahba&Wold 1975, Maron&Moore 1994). As an alternative measure, Cleveland et al. 
(1988) suggested Mallow's Cp-test, originally developed as a way to select covariates in 
linear regression analysis (Mallow, 1966). Hastie&Tibshirani (1991) showed that CV and 
the Cp-test are closely related for certain classes of analyses. Hastie&Tibshirani (1991) 
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also presented pointwise standard-error bands to assess the confidence in a fitted value 
which correspond to confidence bands in the case of an unbiased fit All these tests are 
essentially global by requiring statistical analysis over the entire range of data in mem­
ory. Such a global analysis is computationally costly, and it may also not give an ade­
quate measure at the current query site Xq: the behavior of the function to be approxi­
mated may differ significantly in different places, and an averaging over all these behav­
iors is unlikely to be representative for all query sites (Fan&Gijbels, 1992). 

It is possible to convert some of the above measures to be local. Global cross validation 
has a relative in linear regression analysis, the PRESS residual error (e.g., Myers, 1990), 
here formulated as a mean squared local cross validation error: 

n is the number of data points in memory contributing with a weight Wj greater than 
some small constant (e.g., Wi> 0.01) to the regression, and p is the dimensionality of ~. 
The PRESS statistic performs leave-one-out cross validation computationally very effi­
cient by not requiring the recalculation of ~ (Eq.(1)) for every excluded point. 

Analogously, prediction intervals from linear regression analysis (e.g., Myers, 1990) can 
be transformed to be a local measure too: 

1'1 = x;~ ± (a/2,11'-p' S~1 + x: (XTWTWXfl Xq 

where S2 is an estimate of the variance at x'I: 

S2(X ) = (X~ - ytWTW(X~ - y) 
q n' - p' 

(4) 

(5) 

and (a/2,,.'-' isStudent'st-valueof n'-p' degrees of freedom fora l00(I-a)% predic­
tion bound. The direct interpretation of (4) as prediction bounds is only possible if y is 
an unbiased estimate, which is usually hard to determine. 'I 

Finally, the PRESS statistic can also be used for local outlier detection. For this PUIJJOse it 
is reformulated as a standardized individual PRESS residual: 

eiC,..,.. .. (x q )= ~ , T T T -1 
S 1- w·x. (X W wx) X.W. 

I I I I 

(6) 

This measure has zero mean and unit variance. If it exceeds a certain threshold for a point 
Xi' the point can be called an outlier. 

An important ingredient to forming the measures (3)-(6) lies in the definition of n' and 
p' as given in (3). Imagine that the weighting function (2) is not Gaussian but rather a 
function that clips data points whose distance from the current query point exceeds a cer­
tain threshold and that the remaining r data points all contribute with unit weight. This 
reduced data regression coincides correctly with a r -data regression since n' = r . In the 
case of the soft-weighting (2). the definition of n' ensures the proper definition of the 
moments of the data. However, the definition of p', i.e., the degrees of freedom of the re­
gression, is somewhat arbitrary since it is unclear how many degrees of freedom have ac-
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tually been used. Defining p' as in (3) guarantees that p' < n' and renders all results 
more pessimistic when only a small number of data points contribute to the regression. 

A , ,.. 

A , ,.. 

2 The statistical tests (3) and (4) can not only be 
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(a) : used as a diagnostic tool, but they can also 

.
1 \. serve to optimize the architectural parameters 

J; ., 
:, ofLWR. This results in a function fitting tech-

nique which is called supersmoothing in statis­
tics (Hastie&Tibshirani, 1991). Fan&Gijbels 
(1992) investigated a method for this purpose 
that required estimation of the second deriva-
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1.5 

0.5 

(b) 

data density distribution. These two measures 
are not trivially obtained in high dimensions 
and we would like to avoid using them. Figure 
1 shows fits of noisy data from the function 
y = x- sin\2n:x3 ) COS(2n:x3) exp(x4) with 
95% prediction intervals around the fitted val­
ues. In Figure la, global one-leave-out cross 
validation was applied to optimize k (cf. 

.o .5.+0.2~""""~"0.-'2 ~""'0 .• """"""~0f-.8~"0.8~""""""".....-'r-...-112 Eq.(2». In the left part of the graph the fit 
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x ··> starts to follow noise. Such behavior is to be 
expected since the global optimization of k 
also took into account the quickly changing 
regions on the right side of the graph and thus 
chose a rather small k. In Figure 1b mini­
mization of the local one-leave-out cross vali­
dation error was applied to fit the data, and in 
Figure 1c prediction intervals were mini-

.0 . 5.+0.2..,......,.-.,.....,~...,0. 2-.-,......,.,..0 .• ...,.....,....~0r-.8,....,.....,r-r0.8~...,...,-..,......,.-.,....,1.2 mized. These two fits cope nicely with both 
J(--> 

Figure 1: Optimizing the L WR fit using: (a) 
global cross validation; (b) local cross valida­

tion; (c) local prediction intervals. 

the high frequency and the low frequency re­
gions of the data and recover the true function 
rather well. The extrapolation properties of lo­
cal cross validation are the most appropriate 
given that the we know the true function. 

Interestingly, at the right end of Figure 1c, the minimization of the prediction intervals 
suddenly detects that global regression has a lower prediction interval than local regres­
sion and jumps into the global mode by making k rather large. In both local methods 
there is always a competition between local and global regression. But sudden jumps take 
place only when the prediction interval is so large that the data is not trustworthy anyway. 

To some extend, the statistical tests (3)-(6) implicitly measure the data density at the cur­
rent query point and are thus sensitive towards little data support, characterized by a 
small n'. This property is desirable as a diagnostic tool, particularly if the data sampling 
process can be directed towards such regions. However, if a fixed data set is to be analyz­
ed which has rather sparse and noisy data in several regions, a fit of the data with local 
optimization methods may result in too jagged an approximation since the local fitting 
mistakes the noise in such regions as high frequency portion of the data. Global methods 
avoid this effect by biasing the function fitting in such unfavorable areas with knowledge 
from other data regions and will produce better results if this bias is appropriate. 
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4 THE SHIFTING SETPOINT EXPLORATION ALGORITHM 
In this section we want to give an example of how LWR and its statistical tools can be 
used for goal directed data sampling in learning control. If the task to be learned is high 
dimensional it is not possible to leave data collection to random exploration; on the one 
hand this would take too much time. and on the other hand it may cause the system to en­
ter unsafe or costly regions of operation. We want to develop an exploration algorithm 
which explicitly avoids with such problems. The shifting setpoint algorithm (SSA) at­
tempts to decompose the control problem into two separate control tasks on different time 
scales. At the fast time scale. it acts as a nonlinear regulator by trying to keep the con­
trolled system at some chosen setpoints in order to increase the data density at these set­
points. On a slower time scale. the setpoints are shifted by controlling local prediction ac­
curacy to accomplish a desired goal. In this way the SSA builds a narrow tube of data 
support in which it knows the world. This data can be used by more sophisticated control 
algorithms for planning or further exploration. 

The algorithm is graphically illustrated in the example of a mountain car in Figure 2. The 
task of the car is to drive at a given constant horizontal speed xdesired from the left to the 
right of Figure 2a. xduired need not be met precisely; the car should also minimize its fuel 
consumption. Initially. the car knows nothing about the world and cannot look ahead. but 
it has noisy feedback of its position and velocity. Commands. which correspond to the 
thrust F of the motor. can be generated at 5Hz. The mountain car starts at its start point 
with one arbitrary initial action for the first time step; then it brakes and starts all over 
again. assuming the system can be reset somehow. The discrete one step dynamics of the 
car are modeled by an L WR forward model: 

x...,xt = f(Xc..,.,.elll. F ). where x = (x.xl (7) 

After a few trials~ the SSA searches the data in memory for the point (x;u"elll.F,x~«xt)resl 
whose outcome x lI«xt can be predicted with the smallest local prediction interval. This 
best point is declared the setpoint of this stage: 

( T F T )T (T FAT)T 
XS,ill' S ,XS,OIl' = XC~IIl' 'X llm bltSl (8) 

and its local linear model results from a corresponding LWR lookup: 
A 

XS,OIll = f(xS,u.,Fs ):::: AxS;1I + BFs + C (9) 

Based on this liDear model. an optimal LQ controller (e.g., Dyer&McReynolds. 1970) can 
be constructed. This results in a control law of the form: 

(10) 

After these calculations. the mountain car learned one controlled action for the first time 
step, However. since the initial action was chosen arbitrarily, XS,OIII will be significantly 
away from the desired speed Xdesir«d. A reduction of this error is achieved as follows, 
First, the SSA repeats one step actions with the LQ controller until suffjcient data is col­
lected to reduce the prediction intervals ofLWR lookups for (x~,ill,Fs) (Eq.(9)) below a 
certain threshold. Then it shifts the setpoint towards the goal according to the procedure: 

1) calculate the error of the predicted output state: err S o,d = xde . d - Xs III 

2) take the derivfltive of the error with respect to the comm'and Fs sr;om a LWR lookup 
for (XIill.FS) (cf. (9)): 
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aerr S,OI" = aerr S,Old aXS,OMI = _ aXS,Old = _ B 

aFs aXSpld aFs aFs 

and calculate a correction Ms from solving: -BMs = a errs old ; a E [0,1] deter­
mines how much of the error should be compensated for in one step. 

3) update Fs: Fs = Fs - Ms and calculate the new X SOM1 with LWR (Eq.(9». 
4) assess the fit for the updated setpoint with prediction intervals. If the quality is above 

a certain threshold, continue with I), otherwise terminate shifting. 

Figure 2: The mountain car: (a) landscape across which the car has to drive at constant velocity 
of 0.8 mIs, (b) contour plot of data density in phase space as generated by using multistage 

SSA, (c) contour plot of data density in position-action space, (d) 2-dimensional mountain car 

0.1 In this way, the output state of the setpoint 
shifts towards the goal until the data support 
falls below a threshold. Now the mountain 
car perfonns several new trials with the new 
setpoint and the correspondingly updated 
LQ controller. After the quality of fit statis-

10 2D 30 40 10 tics rise above a threshold, the setpoint can 
• Polltlon E" ... [III) [J Ylloclty EITOf ["'") be shifted again. As soon as the first stage's 

Figure 3: Mean prediction error of local models setpoint reduces the error Xdesj~d - Xs old suf-
ficiently, a new stage is created and the 

mountain car tries to move one step further in its world. The entire procedure is repeated 
for each new stage until the car knows how to move across the landscape. Figure 2b and 
Figure 2c show the thin band of data which the algorithm collected in state space and po­
sition-action space, These two pictures together form a narrow tube of knowledge in the 
input space of the forward model. 
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The example of the mountain car can easily be scaled up to arbitrarily high dimensions by 
making the mountain a multivariate function. We tried versions up to a 5-dimensional 
mountain corresponding to a 9\15 ~ 9\10 forward model; Figure 2d shows the 2-dimen­
sional version. The results of learning had the same quality as in the ID example. Figure 
3 shows the prediction errors of the local models after learning for the ID. 2D •...• and 5D 
mountain car. To obtain these errors. the car was started at random positions within its 
data support from where it drove along the desired trajectory. The difference between the 
predicted next state and the actual outcome at each time step was averaged. Position er­
rors stayed within 2-4 cm on the 10m long landscape. and velocity errors within 0.02-
0.05 m/s. The dimensionality of the problem did not affect the outcome significantly. 

(a) 

(b) 

(;j 

~,~~--------------------~ 

~1OIIJ 

" 21 3, 4' 51 
Trial Number 

(C) 

5 ROBOT JUGGLING 
To test our algorithms in a real world exper­
iment. we implemented them on a juggling 
robot. The juggling task to be performed. 
devil sticking. is illustrated in Figure 4a. For 
the robot. devil sticking was slightly simpli­
fied by attaching the devil stick to a boom. 
as illustrated in Figure 4b. The task state was 
encoded as a 5-dimensional state vector. 
taken at the moment when the devilstick hit 
one of the hand sticks; the throw action was 
parameterized as 5-dimensional action vec­
tor. This resulted in a 9\10 ~ 9\5 discrete 
forward model of the task. Initially the robot 
was given default actions for the left-hand 
and right-hand throws; the quality of these 
throws. however. was far away from achiev­
ing steady juggling. The robot started with 
no initial experiences and tried to build con­
trollers to perform continuous juggling. The 
goal states for the SSA developed automati­
cally from the requirement that the left hand 
had to learn to throw the devilstick to a place 
where the right hand had sufficient data sup­
port to control the devilstick. and vice versa. 
Figure 4c shows a typical learning curve for 
this task. It took about 40 trials before the 
left and the right hand learned to throw the 
devilstick such that both hands were able to 

Figure 4: (a) illustration of devilsticking, (b) a cooperate. Then. performance quickly went 
devils ticking robot, (c) learning curve of robot up to long runs up to 1200 consecutive hits. 

Humans usually need about one week of one 
hour practicing per day before they achieve decent juggling performance. In comparison 
to this. the learning algorithm performed very well. However. it has to be pointed out that 
the learned controllers were only local and could not cope with larger perturbations. A de­
tailed description of this experiment can be found in Schaal&Atkeson (1994). 
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CONCLUSIONS 
One of the advantages of memory-based nonparametric learning methods lies in the least 
commitment strategy which is associated with them. Since all data is kept in memory, a 
lookup can be optimized with respect to the architectural parameters. Parametric ap­
proaches do not have this ability if they discard their training data; if they retain it, they 
essentially become memory-based. The origin of nonparametric modeling in traditional 
statistics provides many established statistical methods to inspect the quality of what has 
been learned by the system. Such statistics formed the backbone of the SSA exploration 
algorithm. So far we have only examined some of the most obvious statistical tools which 
directly relate to regression analysis. Many other methods from other statistical frame­
works may be suitable as well and will be explored by our future work. 
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