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Abstract 

Visualizing and structuring pairwise dissimilarity data are difficult combinatorial op­
timization problems known as multidimensional scaling or pairwise data clustering. 
Algorithms for embedding dissimilarity data set in a Euclidian space, for clustering 
these data and for actively selecting data to support the clustering process are discussed 
in the maximum entropy framework. Active data selection provides a strategy to discover 
structure in a data set efficiently with partially unknown data. 

1 Introduction 
Grouping experimental data into compact clusters arises as a data analysis problem in psy­
chology, linguistics, genetics and other experimental sciences. The data which are supposed 
to be clustered are either given by an explicit coordinate representation (central clustering) 
or, in the non-metric case, they are characterized by dissimilarity values for pairs of data 
points (pairwise clustering). In this paper we study algorithms (i) for embedding non-metric 
data in a D-dimensional Euclidian space, (ii) for simultaneous clustering and embedding of 
non-metric data, and (iii) for active data selection to determine a particular cluster structure 
with minimal number of data queries. All algorithms are derived from the maximum entropy 
principle (Hertz et al., 1991) which guarantees robust statistics (Tikochinsky et al., 1984). 

The data are given by a real-valued, symmetric proximity matrix D E R NXN , 'Dkl being 
the pairwise dissimilarity between the data points k, l. Apart from the symmetry constraint 
we make no further assumptions about the dissimilarities, i.e., we do not require D being a 
metric. The numbers 'Dkl quite often violate the triangular inequality and the dissimilarity of 
a datum to itself could be finite. 

2 Statistical Mechanics of Multidimensional Scaling 
Embedding dissimilarity data in a D-dimensional Euclidian space is a non-convex optimiza­
tion problem which typically exhibits a large number of local minima. Stochastic search 
methods like simulated annealing or its deterministic variants have been very successfulJy 
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applied to such problems. The question in multidimensional scaling is to find coordinates 
{Xi }i~1 in a D-dimensional Euclidian space with minimal embedding costs 

N 

MDS 1 '"' [I 12 ]2 H = 2N L., Xi - Xk - 'Dik . (1) 
i,k=1 

Without loss of generality we shift the center of mass in the origin <2::= I Xk = 0). 

In the maximum entropy framework the coordinates {Xi} are regarded as random variables 
which are distributed according to the Gibbs distribution P ( { Xj} ) = exp( - f3 (H MDS - F). The 
inverse temperature f3 = 1 /T controls the expected embedding costs (HMDS) (expectation val­
ues are denoted by (.). To calculate the free energy F for H MDS we approximate the coupling 

term 2 2:~"k=1 'DikxiXk/N ~ 2:[:1 xihi with the mean fields hi = 4 2:~= 1 'Dik(Xk}/N. 
Standard t~chniques to evaluate the free energy F yield the equations 
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Z(HMDS) rv J dy J II dR.d,d' exp (-f3NF), (2) 
-'00 - 00 d,d'=1 

f) N 00 

F(HMDS ) 2 L R.~d' - f3~ Lin J dXjexp (-f3f(Xi)) ' (3) 
d,d'=1 i=1 - 00 

N 

IXil4 - ~IXiI2 L 'Dik + 4xTR.xi + xT (hi - 4Y)· 
k=1 

f(Xi) (4) 

The integral in Eq. (2) is dominated by the absolute minimum of F in the limit N ~ 00. 

Therefore, we calculate the saddle point equations 

N 

R. = ~ L ((Xjxf) + l(lx iI 2)I) and 0 
i=1 

I Xi exp( -f3f(Xj)dx i 

I exp( -f3 f(Xj)dxi . 

(5) 

(6) 

Equation (6) has been derived by differentiating F with respect to hi. I denotes the D x D 
unit matrix. In the low temperature limit f3 ~ 00 the integral in (3) is dominated by the 
minimum of f(Xi) . Therefore, a new estimate of (Xi) is calculated minimizing f with respect 
to Xi. Since all explicit dependencies between the Xi have been eliminated, this minimization 
can be performed independently for all i, 1 ~ i ~ N. 

In the spirit of the EM algorithm for Gaussian mixture models we suggest the following 
algorithm to calculate a meanfield approximation for the multidimensional scaling problem. 

initialize (Xi)(O) randomly; t = O. 

while 2:::':1 I(Xi )(t ) - (Xi)(t-I)I > t: 

E- step: estimate (Xi) (t+l) as a function of (Xi)( t ) , RY) , y(t), h~t) 

M-step: calculate n (t), h~t) and determine y (t) such 

that the centroid condition is satisfied. 
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This algorithm was used to determine the embedding of protein dissimilarity data as shown in 
Fig. 1 d. The phenomenon that the data clusters are arranged in a circular fashion is explained 
by the lack of small dissimilarity values. The solution in Fig. Id is about a factor of two 
better than the embedding found by a classical MDS program (Gower, 1966). This program 
determines a (N - 1)- space where the ranking of the dissimilarities is preserved and uses 
principle component analysis to project this tentative embedding down to two dimensions. 
Extensions to other MDS cost functions are currently under investigation. 

3 Multidimensional Scaling and Pairwise Clustering 
Embedding data in a Euclidian space precedes quite often a visual inspection by the data 
analyst to discover structure and to group data into clusters. The question arises how both 
problems, the embedding problem and the clustering problem, can be solved simultaneously. 
The second algorithm addresses the problem to embed a data set in a Euclidian space such 
that the clustering structure is approximated as faithfully as possible in the maximum entropy 
sense by the clustering solution in this embedding space. The coordinates in the embedding 
space are the free parameters for this optimization problem. 

Clustering of non-metric dissimilarity data, also called pairwise clustering (Buhmann, Hof­
mann, 1994a), is a combinatorial optimization problem which depends on Boolean assign­
ments Miv E {a, I} of datum i to cluster lJ. The cost function for pairwise clustering with 
J( clusters is 

If 1 N N 

E~:(M) = L 2 N L L MkvMlv'Dkl with 
v=1 Pv k=! 1=1 

(7) 

In the meanfield approach we approximate the Gibbs distribution P( Ej;) corresponding 
to the original cost function by a family of approximating distributions. The distribution 
which represents most accurately the statistics of the original problem is determined by 
the minimum of the Kullback-Leibler divergence to the original Gibbs distribution. In the 
pairwise clustering case we introduce potentials {Ekv } for the effective interactions, which 
define a set of cost functions with non-interacting assignments. 

K N 

£<).; (M, {Ekv }) = L L Mk 1j Ekl;. 
v=1 k=1 

The optimal potentials derived from this minimization procedure are 

{£kv} = arg min 'DKL (PO(E~' )IIP(E~)), 
{£kv} 

(8) 

(9) 

where PO(E9{) is the Gibbs distribution corresponding to E~., and 'DKL(·II·) is the KL­
divergence. This method is equivalent to minimizing an upper bound on the free energy 
(Buhmann, Hofmann, 1994b), 

F(E~:) ::; Fo(E~. ) + (VK)o, with VA" = Ej; - £~" (10) 

(')0 denoting the average over all configurations of the cost function without interactions. 

Correlations between assignment variables are statistically independent for PO( E9(), i.e., 
(MkvA11v)0 = (Mkv )0(A11v )0. The averaged potential VI\, therefore, amounts to 

K N 1 K N 

(Vrd = L L (Mkl;) (Mlv) 2 vN'Dk1 - L L(A1kv)Eklj, (11) 
v=1 k ,I=1 P v=1 k=1 
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the subscript of averages being omitted for conciseness. The expected assignment variables 
are 

(12) 

Minimizing the upper bound yields 

(13) 

The "optimal" potentials 

1 N ( IN) [i~' = J N L(Mkv ) 'Dik - 2 N L(M1v)Dkl 
1v k=1 Pv 1=1 

(14) 

depend on the given distance matrix, the averaged assignment variables and the cluster 
probabilities. They are optimal in the sense, that if we set 

(15) 

the N * K stationarity conditions (13) are fulfilled for every i E {I, ... , N}, 11 E {I, ... , K}. A 
simultaneous solution ofEq. (15) with (12) constitutes a necessary condition for a minimum 
of the upper bound for the free energy :F. 

The connection between the clustering and the multidimensional scaling problem is estab­
lished, if we restrict the potentials [iv to be of the form IXi - Yvf with the centroids 

YII = 2:~=1 Mkl/Xv/ 2::=1 Mkv. We consider the coordinates Xi as the variational param­
eters. The additional constraints restrict the family of approximating distributions, defined 
by £9". to a subset. Using the chain rule we can calculate the derivatives of the upper bound 
(10), resulting in the exact stationary conditions for Xi, 

K N K 
'" (M )(M ) co co '" '" (MjoJ(Mjv ) ~ ia ja (~Cia -~Civ)Ya = ~ ~ N x 

a,v=1 j=1 a,v=1 Pa 

[ N ( a(Mka) T) 1 (~[ia - ~[ir/) (Mia)! + ~ (Xk - Ya) Oxi (Xj - Ya), (16) 

where ~[iOt = £ia - [tao The derivatives a(Mka) /Oxi can be exactly calculated, since they 
are given as the solutions of an linear equation system with N x K unknowns for every Xi. To 
reduce the computational complexity an approximation can be derived under the assumption 
ay 0/ / aXj ~ O. In this case the right hand side of (16) can be set to zero in a first order 
approximation yielding an explicit formula for Xi, 

K K 

KiXi ~ ~ L(Miv) (11Yv1l 2 - [tv) (Yv - L(Mia)Ya) , 
v=1 a=1 

(17) 

with the covariance matrix Ki = ((yyT)j - (Y)i(Y)T) and (Y)i = 2:~=1 (Miv)Y v' 
The derived system of transcendental equations given by (12), (17) and the centroid condi­
tion explicitly reflects the dependencies between the clustering procedure and the Euclidian 
representation. Solving these equations simultaneously leads to an efficient algorithm which 
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Figure 1: Similarity matrix of 145 protein sequences of the globin family (a): dark gray levels 
correspond to high similarity values; (b): clustering with embedding in two dimensions; (c): 
multidimensional scaling solution for 2-dimensional embedding; (d): quality of clustering 
solution with random and active data selection of 'D ik values. eKe has been calculated on the 
basis of the complete set of 'Di k values. 

interleaves the multidimensional scaling process and the clustering process and which avoids 
an artificial separation into two uncorrelated processes . The described algorithm for simul­
taneous Euclidian embedding and data clustering can be used for dimensionality reduction, 
e.g., high dimensional data can be projected to a low dimensional subspace in a nonlinear 
fashion which resembles local principle component analysis (Buhmann, Hofmann, 1994b). 

Figure (l) shows the clustering result for a real-world data set of 145 protein sequences. The 
similarity values between pairs of sequences are determined by a sequence alignment program 
which takes biochemical and structural information into account. The sequences belong to 
different protein families like hemoglobin, myoglobin and other globins; they are abbreviated 
with the displayed capital letters. The gray level visualization of the dissimilarity matrix with 
dark values for similar protein sequences shows the formation of distinct "squares" along the 
main diagonal. These squares correspond to the discovered partition after clustering. The 
embedding in two dimensions shows inter-cluster distances which are in consistent agreement 
with the similarity values of the data. In three and four dimensions the error between the 
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given dissimilarities and the constructed distances is further reduced. The results are in good 
agreement with the biological classification. 

4 Active Data Selection for Data Clustering 
Active data selection is an important issue for the analysis of data which are characterized 
by pairwise dissimilarity values. The size of the distance matrix grows like the square of 
the number of data 'points'. Such a O(N2) scaling renders the data acquisition process 
expensive. It is, therefore, desirable to couple the data analysis process to the data acquisition 
process, i.e., to actively query the supposedly most relevant dissimilarity values. Before 
addressing active data selection questions for data clustering we have to discuss the problem 
how to modify the algorithm in the case of incomplete data. 

If we want to avoid any assumptions about statistical dependencies, it is impossible to infer 
unknown values and we have to work directly with the partial dissimilarity matrix. Since the 
data enters only in the (re-)ca1culation of the potentials in (14), it is straightforward to appro­
priately modify these equations. All sums are restricted to terms with known dissimilarities 
and the normalization factors are adjusted accordingly. 

Alternatively we can try to explicitly estimate the unknown dissimilarity values based on 
a statistical model. For this purpose we propose two models, relying on a known group 
structure of the data. The first model (I) assumes that all dissimilarities between a point 
i and points j belonging to a group G ~ are i.i.d. random variables with the probability 
density Pi/1 parameterized by eiw In this scheme a subset of the known dissimilarities of 
i and j to other points k are used as samples for the estimation of Vij . The selection 
of the specific subset is determined by the clustering structure. In the second model (II) 
we assume that the dissimilarities between groups G v, G ~ are i.i.d. random variables with 
density PV/1 parameterized by e,IW The parameters ev~ are estimated on the basis of all 
known dissimilarities {Vij E V} between points from Gv and G~. 

The assignments of points to clusters are not known a priori and have to be determined in the 
light of the (given and estimated) data. The data selection strategy becomes self-consistent 
if we interpret the mean fields (.I"vfiv) of the clustering solution as posterior probabilities for 
the binary assignment variables. Combined with a maximum likelihood estimation for the 
unknown parameters given the posteriors, we arrive at an EM-like iteration scheme with the 
E-step replaced by the clustering algorithm. 

The precise form of the M-Step depends on the parametric form of the densities Pi~ or PI/~' 
respectively. In the case of Gaussian distributions the M-Step is described by the following 
estimation equations for the location parameters 

(I), (II), (18) 

with 1T:j~ = 1+~vl' ((Mil/){Mj~) + (l\tfi~)(Mjv)). Corresponding expressions are derived 

for the standard deviations at) or a~'~, respectively. In the case of non-normal distributions 
the empirical mean might still be a good estimator of the location parameter, though not 
necessarily a maximum likelihood estimator. The missing dissimilarities are estimated by 
the following statistics, derived from the empirical means. 

K i\[ - (I) + N - (I) 
- (I) '"" J. i~mi~ jvmjv 

Dij = ~ (l\tfiv)(JVfj~) JY + N. 
1/,11=) 1~ }V 

(I), D~~) = '"" .".ij m- (I) (II) 
!} ~ "11/1 'v~ , 

11-:5:~ 

(19) 
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Figure 2: Similarity matrix of 54 word fragments generated by a dynamic programming 
algorithm. The clustering costs in the experiment with active data selection requires only half 
as much data as a random selection strategy. 

with Nil' = E'D.kE'D(i11k11)' For model (I) we have used a pooled estimator to exploit the 
data symmetry. The iteration scheme finally leads to estimates (jill or (j'lt' respectively for the 
parameters and Dij for all unknown dissimilarities. 

Criterion for Active Data Selection: We will use the expected reduction in the variance of 
the free energy Fo as a score, which should be maximized by the selection criterion. Fo is 
given by Fo(D) = -~ E;;:', log E;~l exp( -{3£i/l(D)). If we query a new dissimilarity 
D ij the expected reduction of the variance of the free energy is approximated by 

~ .. = 2 [ aFO]2 V [D .. _ D .. ] 
t) aDij tJ tJ 

(20) 

The partial derivatives can be calculated exactly by solving a system of linear equations with 
N x [ .. : unknowns. Alternatively a first order approximation in f /I = O( 1/ N P,/) yields 

(21) 

This expression defines a relevance measure of Dij for the clustering problem since a Dij 
value contributes to the clustering costs only if the data i and j belong to the same cluster. 
Equation (21) summarizes the mean-field contributions aFo/aDij ~ a(H)o/aDjj . 

To derive the final form of our scoring function we have to calculate an approximation of 
the variance in Eq. (20) which measures the expected squared error for replacing the true 
value Dij with our estimate Dij . Since we assumed statistical independence the variances 
are additive V [Dij - Dij] = V [Dij] + V [Dij]. The total population variance is a sum 
of inner- and inter-cluster variances, that can be approximated by the empirical means and 
by the empirical variances instead of the unknown parameters of Pill or P'lt'. The sampling 
variance of the statistics Dij is estimated under the assumption, that the empirical means ifl'ill 
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or mVJ.l respectively are uncorrelated. This holds in the hard clustering limit. We arrive at 
the following final expression for the variances of model (II) 

v [Vij-Dij ] ~ L1TYJl[(Dij-mvJl)2+(I+I: 1T:JJ.l 1Tkl(j~Jl)l (22) 
V~Jl Vk1EV VJl 

For model (I) a slightly more complicated formula can be derived. Inserting the estimated 
variances into Eq. (20) leads to the final expression for our scoring function. 

To demonstrate the efficiency of the proposed selection strategy, we have compared the 
clustering costs achieved by active data selection with the clustering costs resulting from 
randomly queried data. Assignments int the case of active selection are calculated with 
statistical model (I). Figure 1 d demonstrates that the clustering costs decrease significantly 
faster when the selection criterion (20) is implemented. The structure of the clustering 
solution has been completely inferred with about 3300 selected V ik values. The random 
strategy requires about 6500 queries for the same quality. Analogous comparison results for 
linguistic data are summarized in Fig. 2. Note the inconsistencies in this data set reflected by 
smallVik values outside the cluster blocks (dark pixels) or by the large Vik values (white 
pixels) inside a block. 

Conclusion: Data analysis of dissimilarity data is a challenging problem in molecular bi­
ology, linguistics, psychology and, in general, in pattern recognition. We have presented 
three strategies to visualize data structures and to inquire the data structure by an efficient 
data selection procedure. The respective algorithms are derived in the maximum entropy 
framework for maximal robustness of cluster estimation and data embedding. Active data 
selection has been shown to require only half as much data for estimating a clustering solution 
of fixed quality compared to a random selection strategy. We expect the proposed selection 
strategy to facilitate maintenance of genome and protein data bases and to yield more robust 
data prototypes for efficient search and data base mining. 
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