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Abstract 

The problem of interpolating between specified images in an image 
sequence is a simple, but important task in model-based vision. 
We describe an approach based on the abstract task of "manifold 
learning" and present results on both synthetic and real image se­
quences. This problem arose in the development of a combined 
lip-reading and speech recognition system. 

1 Introduction 

Perception may be viewed as the task of combining impoverished sensory input with 
stored world knowledge to predict aspects of the state of the world which are not 
directly sensed. In this paper we consider the task of image interpolation by which 
we mean hypothesizing the structure of images which occurred between given images 
in a temporal sequence. This task arose during the development of a combined lip­
reading and speech recognition system [3], because the time windows for auditory 
and visual information are different (30 frames per second for the camera vs. 100 
feature vectors per second for the acoustic information). It is an excellent visual 
test domain in general, however, because it is easy to generate large amounts of test 
and training data and the performance measure is largely "theory independent" . 
The test consists of simply presenting two frames from a movie and comparing the 
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Figure 1: Linear interpolated lips. 

Figure 2: Desired interpolation. 

hypothesized intermediate frames to the actual ones. It is easy to use footage of a 
particular visual domain as training data in the same way. 

Most current approaches to model-based vision require hand-constructed CAD­
like models. We are developing an alternative approach in which the vision system 
builds up visual models automatically by learning from examples. One of the central 
components of this kind of learning is the abstract problem of inducing a smooth 
nonlinear constraint manifold from a set of examples from the manifold. We call 
this "manifold learning" and have developed several approaches closely related to 
neural networks for doing it [2]. In this paper we apply manifold learning to the 
image interpolation problem and numerically compare the results of this "nonlinear" 
process with simple linear interpolation. We find that the approach works well when 
the underlying model space is low-dimensional. In more complex examples, manifold 
learning cannot be directly applied to images but still is a central component in a 
more complex system (not discussed here). 

We present several approaches to using manifold learning for this task. We compare 
the performance of these approaches to that of simple linear interpolation. Figure 
1 shows the results of linear interpolation of lip images from the lip-reading system. 
Even in the short period of 33 milliseconds linear interpolation can produce an 
unnatural lip image. The problem is that linear interpolation of two images just 
averages the two pictures. The interpolated image in Fig. 1 has two lower lip parts 
instead of just one. The desired interpolated image is shown in Fig. 2, and consists 
of a single lower lip positioned at a location between the lower lip positions in the 
two input pictures. 

Our interpolation technique is nonlinear, and is constrained to produce only images 
from an abstract manifold in "lip space" induced by learning. Section 2 describes the 
procedure, Section 4 introduces the interpolation technique based on the induced 
manifold, and Sections 5 and 6 describe our experiments on artificial and natural 
images. 

2 Manifold Learning 

Each n * m gray level image may be thought of as a point in an n * m-dimensional 
space. A sequence of lip-images produced by a speaker uttering a sentence lie on a 
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Figure 3: Linear vs nonlinear interpolation. 
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1-dimensional trajectory in this space (figure 3). If the speaker were to move her 
lips in all possible ways, the images would define a low-dimensional submanifold (or 
nonlinear surface) embedded in the high-dimensional space of all possible graylevel 
images. 

If we could compute this nonlinear manifold, we could limit any interpolation algo­
rithm to generate only images contained in it. Images not on the manifold cannot 
be generated by the speaker under normal circumstances. Figure 3 compares a 
curve of interpolated images lying on this manifold to straight line interpolation 
which generally leaves the manifold and enters the domain of images which violate 
the integrity of the model. 

To represent this kind of nonlinear manifold embedded in a high-dimensional fea­
ture space, we use a mixture model of local linear patches. Any smooth nonlinear 
manifold can be approximated arbitrarily well in each local neighborhood by a lin­
ear "patch" . In our representation, local linear patches are "glued" together with 
smooth "gating" functions to form a globally defined nonlinear manifold [2]. We use 
the "nearest-point-query" to define the manifold. Given an arbitrary point near the 
manifold, this returns the closest point on the manifold. We answer such queries 
with a weighted sum of the linear projections of the point to each local patch. The 
weights are defined by an "influence function" associated with each linear patch 
which we usually define by a Gaussian kernel. The weight for each patch is the 
value of its influence function at the point divided by the sum of all influence func­
tions ("partition of unity"). Figure 4 illustrates the nearest-point-query. Because 
Gaussian kernels die off quickly, the effect of distant patches may be ignored, im­
proving computational performance. The linear projections themselves consist of a 
dot product and so are computationally inexpensive. 

For learning, we must fit such a mixture of local patches to the training data. An 
initial estimate of the patch centers is obtained from k-means clustering. We fit a 
patch to each local cluster using a local principal components analysis. Fine tuning 
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Figure 4: Local linear patches glued together to a nonlinear manifold. 

of the model is done using the EM (expectation-maximization) procedure. 

This approach is related to the mixture of expert architecture [4], and to the man­
ifold representation in [6]. Our EM implementation is related to [5] , which uses a 
hierarchical gating function and local experts that compute linear mappings from 
one space to another space. In contrast, our approach uses a "one-level" gating 
function and local patches that project a space into itself. 

3 Linear Preprocessing 

Dealing with very high-dimensional domains (e.g. 256 * 256 gray level images) re­
quires large memory and computational resources. Much of this computation is 
not relevant to the task, however. Even if the space of images is nonlinear, the 
nonlinearity does not necessarily appear in all of the dimensions. Earlier experi­
ments in the lip domain [3] have shown that images projected onto a lO-dimensional 
linear subspace still accurately represents all possible lip configurations. We there­
fore first project the high-dimensional images into such a linear subspace and then 
induce the nonlinear manifold within this lower dimensional linear subspace. This 
preprocessing is similar to purely linear techniques [7, 10, 9] . 

4 Constraint Interpolation 

Geometrically, linear interpolation between two points in n-space may be thought of 
as moving along the straight line joining the two points. In our non-linear approach 
to interpolation, the point moves along a curve joining the two points which lies 
in the manifold of legal images. We have studied several algorithms for estimating 
the shortest manifold trajectory connecting two given points. For the performance 
results, we studied the point which is halfway along the shortest trajectory. 
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4.1 "Free-Fall" 

The computationally simplest approach is to simply project the linearly interpolated 
point onto the nonlinear manifold. The projection is accurate when the point is close 
to the manifold. In cases where the linearly interpolated point is far away (i.e. no 
weight of the partition of unity dominates all the other weights) the closest-point­
query does not result in a good interpolant. For a worst case, consider a point 
in the middle of a circle or sphere. All local patches have same weight and the 
weighted sum of all projections is the center point itself, which is not a manifold 
point. Furthermore, near such "singular" points, the final result is sensitive to small 
perturbations in the initial position. 

4.2 "Manifold-Walk" 

A better approach is to "walk" along the manifold itself rather than relying on the 
linear interpolant. Each step of the walk is linear and in the direction of the target 
point but the result is immediately projected onto the manifold. This new point is 
then moved toward the target point and projected onto the manifold, etc. When 
the target is finally reached, the arc length of the curve is approximated by the 
accumulated lengths of the individual steps. The point half way along the curve 
is chosen as the interpolant. This algorithm is far more robust than the first one, 
because it only uses local projections, even when the two input points are far from 
each other. Figure 5b illustrates this algorithm. 

4.3 "Manifold-Snake" 

This approach combines aspects of the first two algorithms. It begins with the lin­
early interpolated points and iteratively moves the points toward the manifold. The 
Manifold-Snake is a sequence of n points preferentially distributed along a smooth 
curve with equal distances between them. An energy function is defined on such 
sequences of points so that the energy minimum tries to satisfy these constraints 
(smoothness, equidistance, and nearness to the manifold): 

(1) 

E has value 0 if all Vi are evenly distributed on a straight line and also lie on the 
manifold. In general E can never be 0 if the manifold is nonlinear, but a minimum 
for E represents an optimizing solution. We begin with a straight line between the 
two input points and perform gradient descent in E to find this optimizing solution. 

5 Synthetic Examples 

To quantify the performance of these approaches to interpolation, we generated a 
database of 16 * 16 pixel images consisting of rotated bars. The bars were rotated 
for each image by a specific angle. The images lie on a one-dimensional nonlinear 
manifold embedded in a 256 dimensional image space. A nonlinear manifold repre­
sented by 16 local linear patches was induced from the 256 images. Figure 6a shows 
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a) "Free Fall" b) "Surface Walk" 

c) "Surface Snake" 

Figure 5: Proposed interpolation algorithms. 
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Figure 6: a) Linear interpolation, b) nonlinear interpolation. 

two bars and their linear interpolation. Figure 6b shows the nonlinear interpolation 
using the Manifold- Walk algorithm. 

Figure 7 shows the average pixel mean squared error of linear and nonlinear in­
terpolated bars. The x-axis represents the relative angle between the two input 
points. 

Figure 8 shows some iterations of a Manifold-Snake interpolating 7 points along a 
1 dimensional manifold embedded in a 2 dimensional space . 
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Figure 7: Average pixel mean squared error of linear and nonlinear interpolated 
bars. 
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Figure 8: Manifold-Snake iterations on an induced 1 dimensional manifold embed­
ded in 2 dimensions. 

Figure 9: 16x16 images. Top row: linear interpolation. Bottom row: nonlinear 
"manifold-walk" interpolation. 

6 Natural Lip Images 

We experimented with two databases of natural lip images taken from two different 
subjects. 

Figure 9 shows a case of linear interpolated and nonlinear interpolated 16 * 16 
pixel lip images using the Manifold- Walk algorithm. The manifold consists of 16 
4-dimensional local linear patches. It was induced from a training set of 1931 
lip images recorded with a 30 frames per second camera from a subject uttering 
various sentences. The nonlinear interpolated image is much closer to a realistic lip 
configuration than the linear interpolated image. 

Figure 10 shows a case of linear interpolated and nonlinear interpolated 45 * 72 
pixel lip images using the Manifold-Snake algorithm. The images were recorded 
with a high-speed 100 frames per second camera l . Because of the much higher 
dimensionality of the images, we projected the images into a 16 dimensional linear 
subspace. Embedded in this subspace we induced a nonlinear manifold consisting 
of 16 4-dimensionallocallinear patches, using a training set of 2560 images. The 
linearly interpolated lip image shows upper and lower teeth, but with smaller con­
trast , because it is the average image of the open mouth and closed mouth. The 
nonlinearly interpolated lip images show only the upper teeth and the lips half way 
closed, which is closer to the real lip configuration. 

7 Discussion 

We have shown how induced nonlinear manifolds can be used to constrain the 
interpolation of gray level images. Several interpolation algorithms were proposed 

IThe images were recorded in the UCSD Perceptual Science Lab by Michael Cohen 
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Figure 10: 45x72 images projected into a 16 dimensional subspace. Top row: linear 
interpolation. Bottom row: nonlinear "manifold-snake" interpolation. 

and experimental studies have shown that constrained nonlinear interpolation works 
well both in artificial domains and natural lip images. 

Among various other nonlinear image interpolation techniques, the work of [1] using 
a Gaussian Radial Basis Function network is most closely related to our approach. 
Their approach is based on feature locations found by pixelwise correspondence, 
where our approach directly interpolates graylevel images. 

Another related approach is presented in [8]. Their images are also first projected 
into a linear subspace and then modelled by a nonlinear surface but they require 
their training examples to lie on a grid in parameter space so that they can use 
spline methods. 
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