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Abstract 
Visual occlusion events constitute a major source of depth information. 
This paper presents a self-organizing neural network that learns to detect, 
represent, and predict the visibility and invisibility relationships that arise 
during occlusion events, after a period of exposure to motion sequences 
containing occlusion and disocclusion events. The network develops two 
parallel opponent channels or "chains" of lateral excitatory connections 
for every resolvable motion trajectory. One channel, the "On" chain or 
"visible" chain, is activated when a moving stimulus is visible. The other 
channel, the "Off" chain or "invisible" chain, carries a persistent, amodal 
representation that predicts the motion of a formerly visible stimulus that 
becomes invisible due to occlusion. The learning rule uses disinhibition 
from the On chain to trigger learning in the Off chain. The On and 
Off chain neurons can learn separate associations with object depth or­
dering. The results are closely related to the recent discovery (Assad & 
Maunsell, 1995) of neurons in macaque monkey posterior parietal cortex 
that respond selectively to inferred motion of invisible stimuli. 

1 INTRODUCTION: LEARNING ABOUT OCCLUSION 
EVENTS 

Visual occlusion events constitute a major source of depth information. Yet lit­
tle is known about the neural mechanisms by which visual systems use occlusion 
events to infer the depth relations among visual objects. What is the structure of 
such mechanisms? Some possible answers to this question are revealed through an 
analysis of learning rules that can cause such mechanisms to self-organize. 

Evidence from psychophysics (Kaplan, 1969; Nakayama & Shimojo, 1992; 
Nakayama, Shimojo, & Silverman, 1989; Shimojo, Silverman, & Nakayama, 
1988, 1989; Yonas, Craton, & Thompson, 1987) and neurophysiology (Assad & 
Maunsell, 1995; Frost, 1993) suggests that the process of determining relative 
depth from occlusion events operates at an early stage of visual processing. Mar­
shall (1991) describes evidence that suggests that the same early processing mech­
anisms maintain a representation of temporarily occluded objects for some amount 
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of time after they have disappeared behind an occluder, and that these represen­
tations of invisible objects interact with other object representations, in much the 
same manner as do representations of visible objects. The evidence includes the 
phenomena of kinetic subjective contours (Kellman & Cohen, 1984), motion viewed 
through a slit (Parks' Camel) (Parks, 1965) , illusory occlusion (Ramachandran, In­
ada, & Kiama, 1986) , and interocular occlusion sequencing (Shimojo, Silverman, & 
Nakayama, 1988). 

2 PERCEPTION OF OCCLUSION AND 
DISOCCLUSION EVENTS: AN ANALYSIS 

The neural network model exploits the visual changes that occur at occlusion bound­
aries to form a mechanism for detecting and representing object visibility/invisibility 
information. The set of learning rules used in this model is an extended version of 
one that has been used before to describe the formation of neural mechanisms for 
a variety of other visual processing functions (Hubbard & Marshall, 1994; Mar­
shall, 1989, 1990ac, 1991, 1992; Martin & Marshall, 1993). 

Our analysis is derived from the following visual predictivity principle, which 
may be postulated as a fundamental principle of neural organization in visual sys­
tems: Visual systems represent the world in terms of predictions of its appearance, 
and they reorganize themselves to generate better predictions. To maximize the cor­
rectness and completeness of its predictions, a visual system would need to predict 
the motions and visibility/invisibility of all objects in a scene. Among other things, 
it would need to predict the disappearance of an object moving behind an occluder 
and the reappearance of an object emerging from behind an occluder. 

A consequence of this postulate is that occluded objects must, at some level, 
continue to be represented even though they are invisible. Moreover, the repre­
sentation of an object must distinguish whether the object is visible or invisible; 
otherwise, the visual system could not determine whether its representations predict 
visibility or invisibility, which would contravene the predictivity principle. Thus, 
simple single-channel prediction schemes like the one described by Marshall (1989, 
1990a) are inadequate to represent occlusion and disocclusion events. 

3 A MODEL FOR GROUNDED LEARNING TO 
PREDICT VISIBILITY AND INVISIBILITY 

The initial structure of the Visible/Invisible network model is given in Figure 1A. 
The network self-organizes in response to a training regime containing many input 
sequences representing motion with and without occlusion and disocclusion events. 
After a period of self-organization, the specific connections that a neuron receives 
(Figure 1B) determine whether it responds to visible or invisible objects. A neuron 
that responds to visible objects would have strong bottom-up input connections, 
and it would also have strong time-delayed lateral excitatory input connections. A 
neuron that responds selectively to invisible objects would not have strong bottom­
up connections, but it would have strong lateral excitatory input connections. These 
lateral inputs would transmit to the neuron evidence that a previously visible object 
existed. The neurons that respond to invisible objects must operate in a way that 
allows lateral input excitation alone to activate the neurons supraliminally, in the 
absence of bottom-up input excitation from actual visible objects. 

4 SIMULATION OF A SIMPLIFIED NETWORK 
4.1 INITIAL NETWORK STRUCTURE 

The simulated network, shown in Figure 2, describes a simplified one­
dimensional subnetwork (Marshall & Alley, 1993) of the more general two­
dimensional network. Layer 1 is restricted to a set of motion-sensitive neurons 
corresponding to one rightward motion trajectory. 

The L+ connections in the simulation have a signal transmission latency of 
one time unit. Restricting the lateral connections to a single time delay and to a 
single direction limits the simulation to representing a single speed and direction of 
motion; these results are therefore preliminary. This restriction reduced the number 
of connections and made the simulation much faster. 
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(A) 0 0 ,'9 (B) . 
Figure 1: Model of a self-organized occlusion-event detector network. (A) Network is initially 
organized nonspecifically, so that each neuron receives roughly homogeneous input connections: 
feedforward, bottom-up excitatory ("B+") connections from a preprocessing stage of motion-tuned 
neurons (bottom-up solid arrows), lateral inhibitory ("L-") connections (dotted arrows), and time­
delayed lateral excitatory ("L+") connections (lateral solid arrows) . (B) After exposure during 
a developmental period to many motion sequences containing occlusion and disocclusion events, 
the network learns a highly specific connection structure. The previously homogeneous network 
bifurcates into two parallel opponent channels for every resolvable motion trajectory: some neurons 
keep their bottom-up connections and others lose them . The channels for one trajectory are shown . 
Neurons from the two opponent channels are strongly linked by lateral inhibitory connections 
(dotted arrows). Time-delayed lateral excitatory connections cause stimulus information (priming 
excitation, or "prediction signals") to propagate along the channels. 

Layer 2 

Layer 1 
Figure 2: Simula.tion results. (Left) Simulated network structure before training. Neurons are 
wired homogeneously from the input la.yer. (Right) After training, some of the neurons lose their 
bottom-up input connections. 

4.2 USING DISINHIBITION TO CONTROL THE LEARNING OF 
OCCLUSION RELATIONS 

This paper describes one method for learning occlusion relations. Other 
methods may also work. The method involves extending the EXIN (excita­
tory+inhibitory) learning scheme described by Marshall (1992, 1995). The EXIN 
scheme uses a variant of a Hebb rule to govern learning in the bottom-up and time­
delayed lateral excitatory connections, plus an anti-Hebb rule to govern learning in 
the lateral inhibitory connections. 

The EX IN system was extended by letting inhibitory connections exert a disin­
hibitory effect under certain regulated conditions. The disinhibition rule was chosen 
because it constitutes a simple way that the unexpected failure of a neuron to be­
come activated (e.g., when an object disappears behind an occluder) can cause some 
other neuron to become activated . That other neuron can then learn, becoming se­
lective for invisible object motion. Thus, the representations of visible objects are 
protected from losing their bottom-up input connections during occlusion events. 

In this way, the network can learn separate representations for visible and in­
visible stimuli . The representations of invisible objects are allowed to develop only 
to the extent that the neurons representing visible objects explicitly disclaim the 
"right" to represent the objects. These properties prevent the network from los­
ing complete grounded contact with actual bottom-up visual input, while at the 
same time allowing some neurons to lose their direct bottom-up input connections. 

The disinhibition produces an excitatory response at the target neurons . Dis­
inhibition is generated according to the following rule: When a neuron has strong, 
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active lateral excitatory input connections and strong but inactive bottom-up input 
connections, then it tends to disinhibit the neurons to which it projects inhibitory 
connections. This implements a type of differencing operation between lateral and 
bottom-up excitation. Because the disinhibition tends to excite the recipient neu­
rons, it causes one (or possibly more) of the recipient neurons to become active and 
thereby enables that neuron to learn. 

The lateral excitation that a neuron receives can be viewed as a prediction of 
the neuron's activation. If that prediction is not matched by actual bottom-up 
excitation, then a shortfall (prediction failure) has occurred, probably indicating 
an occlusion event. 

Each neuron's disinhibition input was combined with its bottom-up excitatory 
input and its lateral excitatory input to form a total excitatory input signal. Ei­
ther bottom-up excitation or disinhibition alone could contribute toward a neuron's 
excitation. However, lateral excitation could merely amplify the other signals and 
could not alone excite the neuron. This prevented neurons from learning in response 
to lateral excitation alone. 
4.3 DISINH.IBITION LETS THE NETWORK LEARN TO 

RESPOND TO INVISIBLE OBJECTS 
During continuous motion sequences, without occlusion or disocclusion, the 

system operates similarly to a system with the standard EXIN learning rules (Mar­
shall, 1990b, 1995): lateral excitatory "chains" of connections are learned across 
sequences of neurons along a motion trajectory. Marshall (1990a) showed that such 
chains form in 2-D networks with multiple speeds and multiple directions of motion. 

During occlusion events, some predictive lateral excitatory signals reach neu­
rons that have strong but inactive bottom-up excitatory connections. The neurons 
reached by this excitation pattern disinhibit, rather than inhibit, their competitor 
neurons. Over the course of many occlusion events, such neurons become increas­
ingly selective for the inferred motion of an invisible object: their bottom-up input 
connections weaken, and their lateral inhibitory input connections strengthen. 

More than one neuron receives L+ signals after every neuron activation; the 
recipients of each neuron's L+ output connections represent the (learned) possi­
ble sequents of the neuron's activation. But at most one of those sequents actually 
receives both B+ and L+ signals: the one that corresponds to the actual stimu­
lus. This winner neuron receives the disinhibition from the other neurons receiving 
L+ excitation; its competitive advantage over the other neurons is thus reinforced. 
4.4 SIMULATION TRAINING 

The sequences of input training data consisted of a single visual feature moving 
with constant velocity across the I-D visual field. When this stimulus was visible, 
its presence was indicated by strong activation of an input neuron in Layer 1. 
While occluded, the stimulus would produce no activation in Layer 1. The stimulus 
occasionally disappeared "behind" an occluder and reappeared at a later time and 
spatial position farther along the same trajectory. After some duration, the stimulus 
was removed and replaced by a new stimulus. The starting positions and lifetimes 
of the stimuli and occluders were varied randomly within a fixed range. 

The network was trained for 25,000 input pattern presentations. The stability of 
the connection weights was verified by additional training for 50,000 presentations. 
4.5 SIMULATION RESULTS: ARCHITECTURE 

The second stage of neurons gradually underwent a self-organized bifurcation 
into two distinct pools of neurons, as shown in Figure 2B. These pools consist of two 
parallel opponent channels or "chains" of lateral excitatory connections for every 
resolvable motion trajectory. One channel, the "On" chain or "visible" chain, was 
active when a moving stimulus became visible. The other channel, the "Off" chain 
or "invisible" chain, was active when a formerly visible stimulus became invisible. 
The model is thus named the Visible/Invisible model. The bifurcation may be 
analogous to the activity-dependent stratification of cat retinal gan~lion cells into 
separate On and Off layers, described by Bodnarenko and Chalupa (1993). 
4.6 SIMULATION RESULTS: OPERATION 

The On chain carries a predictive modal representation of the visible stimulus. 
The Off chain carries a persistent, amodal representation that predicts the motion 
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of the invisible stimulus. The shading of the neurons in Figure 3 shows the neuron 
acti vat ions of the final, trained network simulation during an occlusion-disocclusion 
sequence. The following noteworthy behaviors were observed in the test. 

• When the stimulus was visible, it was represented by activation in the 
On channel. 

• When the stimulus became invisible, its representation was carried in the 
Off channel. The Off channel did not become active until the visible stim­
ulus disappeared. 

• The activations representing the visible stimulus became stronger (toward 
an asymptote) at successive spatial positions, because of the propagation 
of accumulating evidence for the presence of the stimulus (Martin & Mar­
shall, 1993). 

• The activation representing the invisible stimulus decayed at successive 
spatial positions. Thus, representations of invisible stimuli did not remain 
active indefinitely. 

• When the stimulus reappeared (after a sufficiently brief occlusion), its ac­
tivation in the On channel was greater than its initial activation in the 
On channel. Thus, the representation carried across the Off channel helps 
maintain the perceptual stability of the stimulus despite its being temporar­
ily occluded along parts of its trajectory. 
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Figure 3: Simulated network operation after learning. The learning pr()c~d~'re cahses the repre­
sentation of each trajectory to split into two parallel opponent channels. The Visible and Invisible 
channel pair for a single trajectory are shown. The display has been arranged so that all the 
Visible channel neurons are on the same row (Layer 2, lower row); likewise the Invisible channel 
neurons (Layer 2, upper row). Solid arrows indicate excitatory connections. Gray arrows indicate 
lateral inhibitory connections. (Left) The network's responses to an unbroken rightward motion 
of the stimulus are shown. The activities of the network at successive moments in time have been 
combined into a single network display; each horizontal position in the figure represents a different 
moment in time as well as a different position in the network. The stimulus successively activates 
motion detectors (solid circles) in Layer 1. The activation of the responding neuron in the sec­
ond layer builds toward an asymptote, reaching full activation by the fourth frame . (Right) The 
network's responses to a broken (occluded) rightward motion sequence are shown. When the stim­
ulus reaches the region indicated by gray shading, it disappears behind a simulated occluder. The 
network responds by successively activating neurons in the Invisible channel. When the stimulus 
emerges from behind the occluder (end of gray shading) , it is again represented by activation in 
the Visible channel. 

5 DISCUSSION 
5.1 PSYCHOPHYSICAL ISSUES AND PREDICTIONS 

Several visual phenomena (Burr, 1980; Piaget, 1954; Shimojo, Silverman, & 
Nakayama, 1988) support the notion that early processing mechanisms maintain a 
dynamic representation of temporarily occluded objects for some amount of time 
after they disappear (Marshall, 1991). In general, the duration of such represen­
tations should vary as a function of many factors, including top-down cognitive 
expectations, stimulus complexity, and Gestalt grouping. 
5.2 ALTERNATIVE MECHANISMS 

Another model besides the Visible/Invisible model was studied extensively: a 
Visible/Virtual system, which would develop some neurons that respond to visible 
objects and others that respond to both visible and invisible objects (Le., to "vir­
tual" objects). There is a functional equivalence between such a Visible/.Virtual 
system and a Visible/Invisible system: the same information about visibllity and 
invisibility can be determined by examining the activations of the neurons. Activity 
in a Virtual channel neuron, paired with inactivity in a corresponding Visible chan­
nel neuron, would indicate the presence of an invisible stimulus. 
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5.3 NEUROPHYSIOLOGICAL CORRELATES 
Assad and Maunsell (1995) recently described their remarkable discovery ofneu­

rons in macaque monkey posterior parietal cortex that respond selectively to the 
inferred motion of invisible stimuli. This type of neuron responded more strongly to 
the disappearance and reappearance of a stimulus in a task where the stimulus' "in­
ferred" trajectory would pass through the neuron's receptive field than in a task 
where the stimulus would disappear and reappear in the same position. Most of 
these neurons also had a strong off-response, which in the present models is closely 
correlated with inferred motion. Thus, the results of Assad and Maunsell (1995) 
are more directly consistent with the Visible/Virtual model than with the Visi­
ble/Invisible model. Although this paper describes only one of these models, both 
models merit investigation. 
5.4 LEARNING ASSOCIATIONS BETWEEN VISIBILITY AND 

RELATIVE DEPTH 
The activation of neurons in the Off channels is highly correlated with the ac­

tivation of other neurons elsewhere in the visual system, specifically neurons whose 
activation indicates the presence of other objects acting as occluders. Simple asso­
ciative Hebb-type learning lets such occluder-indicator neurons and the Off channel 
neurons gradually establish reciprocal excitatory connections to each other. 

After such reciprocal excitatory connections have been learned, activation of 
occluder-indicator neurons at a given spatial position causes the network to favor 
the Off channel in its predictions - i.e., to predict that a moving object will be 
invisible at that position. Thus, the network learns to use occlusion information to 
generate better predictions of the visibility/invisibility of objects. 

Conversely, the activation of Off channel neurons causes the occluder-indicator 
neurons to receive excitation. The disappearance of an object excites the represen­
tation of an occluder at that location. If the representation of the occluder was 
not previously activated, then the excitation from the Off channel may even be 
strong enough to activate it alone. Thus, disappearance of moving visual objects 
constitutes evidence for the presence of an inferred occluder. These results will be 
described in a later paper. 
5.5 LIMITATIONS AND FUTURE WORK 

The Visible/Invisible model presented in this paper describes SOme of the pro­
cesses that may be involved in detecting and representing depth from occlusion 
events. There are other major issues that have not been addressed in this paper. 
For example, how can the system handle real 2-D or 3-D objects, composed of many 
visual features grouped together across space, instead of mere point stimuli? How 
can it handle partial occlusion of objects? How can it handle nonlinear trajectories? 
How exactly can the associative links between occluding and occluded objects be 
formed? How can it handle transparency? 

6 CONCLUSIONS 
Perception of relative depth from occlusion events is a powerful, useful, but poorly­
understood capability of human and animal visual systems. We have presented 
an analysis based on predictivity: a visual system that can predict the visibil­
ity /invisibility of objects during occlusion events possesses (ipso facto) a good repre­
sentation of relative depth. The analysis implies that the representations for visible 
and invisible objects must be distinguishable. We have implemented a model system 
in which distinct representations for visible and invisible features self-organize in re­
sponse to exposure to motion sequences containing simulated occlusion and disocclu­
sion events. When a moving feature fails to appear approximately where and when 
it is predicted to appear, the mismatch between prediction and the actual image 
triggers an unsupervised learning rule. Over many motions, the learning leads to a 
bifurcation of a network layer into two parallel opponent channels of neurons. Pre­
diction signals in the network are carried along motion trajectories by specific chains 
of lateral excitatory connections. These chains also cause the representation of in­
visible features to propagate for a limited time along the features' trajectories. The 
network uses shortfall (differencing) and disinhibition to maintain grounding of the 
representations of invisible features. 
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