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We introduce a model for noise-robust analog computations with 
discrete time that is flexible enough to cover the most important 
concrete cases, such as computations in noisy analog neural nets 
and networks of noisy spiking neurons. We show that the presence 
of arbitrarily small amounts of analog noise reduces the power of 
analog computational models to that of finite automata, and we 
also prove a new type of upper bound for the VC-dimension of 
computational models with analog noise. 

1 Introduction 

Analog noise is a serious issue in practical analog computation. However there exists 
no formal model for reliable computations by noisy analog systems which allows us 
to address this issue in an adequate manner. The investigation of noise-tolerant 
digital computations in the presence of stochastic failures of gates or wires had been 
initiated by [von Neumann, 1956]. We refer to [Cowan, 1966] and [Pippenger, 1989] 
for a small sample of the nllmerous results that have been achieved in this direction. 
In all these articles one considers computations which produce a correct output not 
with perfect reliability, but with probability ~ t + p (for some parameter p E (0, t D· 
The same framework (with stochastic failures of gates or wires) hac; been applied 
to analog neural nets in [Siegelmann, 1994]. 

The abovementioned approaches are insufficient for the investigation of noise in 
analog computations, because in analog computations one has to be concerned not 
only with occasional total failures of gates or wires, but also with "imprecision", i.e. 
with omnipresent smaller (and occa<;ionally larger) perturbations of analog outputs 
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of internal computational units. These perturbations may for example be given 
by Gaussian distributions. Therefore we introduce and investigate in this article 
a notion of noise-robust computation by noisy analog systems where we assume 
that the values of intermediate analog values are moved according to some quite 
arbitrary probability distribution. We consider - as in the traditional framework for 
noisy digital computations - arbitrary computations whose output is correct with 
some given probability 2: ~ + P (for p E (O,~]) . We will restrict our attention to 
analog computation with digital output. Since we impose no restriction (such as 
continuity) on the type of operations that can be performed by computational units 
in an analog computational system, an output unit of such system can convert an 
analog value into a binary output via "thresholding". 

Our model and our Theorem 3.1 are somewhat related to the analysis of probabilistic 
finite automata in [Rabin, 1963]. However there the finiteness of the state space 
simplifies the setup considerably. [Casey, 1996] addresses the special case of analog 
computations on recurrent neural nets (for those types of analog noise that can 
move an internal state at most over a distance c) whose digital output is perfectly 
reliable (Le. p = 1/2 in the preceding notation).l 

The restriction to perfect reliability in [Casey, 1996] has immediate consequences 
for the types of analog noise processes that can be considered, and for the types of 
mathematical arguments that are needed for their investigation. In a computational 
model with perfect reliability of the output it cannot happen that an intermediate 
state §. occurs at some step t both in a computation for an input !!2 that leads to 
output "0" , and at step t in a computation for the same input "!!2" that leads to 
output "I" . Hence an analysis of perfectly reliable computations can focus on par­
titions of intermediate states §. according to the computations and the computation 
steps where they may occur. 

Apparently many important concrete cases of noisy analog computations require a 
different type of analysis. Consider for example the special case of a sigmoidal neural 
net (with thresholding at the output), where for each input the output of an internal 
noisy sigmoidal gate is distributed according to some Gaussian distribution (perhaps 
restricted to the range of all possible output values which this sigmoidal gate can 
actually produce). In this case an intermediate state §. of the computational system 
is a vector of values which have been produced by these Gaussian distributions. 
Obviously each such intermediate state ~ can occur at any fixed step t in any 
computation (in particular in computations with different network output for the 
same network input). Hence perfect reliability of the network output is unattainable 
in this case. For an investigation of the actual computational power of a sigmoidal 
neural net with Gaussian noise one haC) to drop the requirement of perfect reliability 
of the output, and one has to analyze how probable it is that a particular network 
output is given, and how probable it is that a certain intermediate state is assumed. 
Hence one has to analyze for each network input and each step t the different 

IThere are relatively few examples for nontrivial computations on common digital or 
analog computational models that can achieve perfect reliability of the output in spite of 
noisy internal components. Most constructions of noise-robust computational models rely 
on the replication of noisy computational units (see [von Neumann, 1956], [Cowan, 1966]). 
The idea of this method is that the average of the outputs of k identical noisy computational 
units (with stochastically independent noise processes) is with high probability close to the 
expected value of their output, if k is sufficiently large. However for any value of k there 
exists in general a small but nonzero probability that this average deviates strongly from 
its expected value. In addition, if one assumes that the computational unit that produces 
the output of the computations is also noisy, one cannot expect that the reliability of the 
output of the computation is larger than the reliability of this last computational unit. 
Consequently there exist many methods for reducing the error-probability of the output 
to a small value, but these methods cannot achieve error probability 0 at the output. 
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probability distributions over intermediate states §.. that are induced by computations 
of the noisy analog computational system. In fact, one may view the set of these 
probability distributions over intermediate states §.. as a generalized set of "states" of 
a noisy analog computational system. In general the mathematical structure of this 
generalized set of "states" is substantially more complex than that of the original 
set of intermediate states §.. • We have introduced in [Maass, Orponen, 1996] some 
basic methods for analyzing this generalized set of "states", and the proofs of the 
main results in this article rely on this analysis. 

The preceding remarks may illustrate that if one drops the assumption of perfect 
reliability of the output, it becomes more difficult to prove upper bounds for the 
power of noisy analog computations. We prove such upper bounds even for the case 
of stochastic dependencies among noises for different internal units, and for the case 
of nonlinear dependencies of the noise on the current internal state. Our results also 
cover noisy computations in hybrid analog/digital computational models, such as for 
example a neural net combined with a binary register, or a network of noisy spiking 
neurons where a neuron may temporarily assume the discrete state "not-firing". 
Obviously it becomes quite difficult to analyze the computational effect of such 
complex (but practically occuring) types of noise without a rigorous mathematical 
framework. We introduce in section 2 a mathematical framework that is general 
enough to subsume all these cases. The traditional case of noisy digital computations 
is captured as a special case of our definition. 

One goal of our investigation of the effect of analog noise is to find out which features 
of analog noise have the most detrimental effect on the computational power of an 
analog computational system. This turns out to be a nontrivial question.2 As a 
first step towards characterizing those aspects and parameters of analog noise that 
have a strong impact on the computational power of a noisy analog system, the 
proof of Theorem 3.1 (see [Maass, Orponen, 1996]) provides an explicit bound on 
the number of states of any finite automaton that can be implemented by an analog 
computational system with a given type of analog noise. It is quite surprising to 
see on which specific parameters of the analog noise the bound depends. Similarly 
the proofs of Theorem 3.4 and Theorem 3.5 provide explicit (although very large) 
upper bounds for the VC-dimension of noisy analog neural nets with batch input, 
which depend on specific parameters of the analog noise. 

2 Preliminaries: Definitions and Examples 

An analog discrete-time computational system (briefly: computational system) M 
is defined in a general way as a 5-tuple (0, pO, F, 1:, s), where 0, the set of states, 
is a bounded subset of R d , po E 0 is a distinguished initial state, F ~ 0 is the 
set of accepting states, 1: is the input domain, and s : 0 x E ~ 0 is the transition 
function. To avoid unnecessary pathologies, we impose the conditions that 0 and 
F are Borel subsets of R d, and for each a E 1:, s(p, a) is a measurable function of 
p. We also assume that E contains a distinguished null value U, which may be used 
to pad the actual input to arbitrary length. The nonnull input domain is denoted 
by 1:0 = 1: - {U}. 

2For example, one might think that analog noise which is likely to move an internal 
state over a large distance is more harmful than another type of analog noise which keeps 
an internal state within its neighborhood. However this intuition is deceptive. Consider 
the extreme case of analog noise in a Sigmoidal neural net which moves a gate output 
x E [-1,1] to a value in the e-neighborhood of -x. This type of noise moves some values 
x over large distances, but it appears to be less harmful for noise-robust computing than 
noise which moves x to an arbitrary value in the lOe-neighborhood of x . 
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The intended noise-free dynamics of such a system M is as follows. The system 
starts its computation in state pO, and on each single computation step on input 
element a E Eo moves from its current state p to its next state s(p, a). After 
the actual input sequence has been exhausted, M may still continue to make pure 
computation steps. Each pure computation step leads it from a state p to the state 
s(p, U). The system accepts its input if it enters a state in the class F at some point 
after the input has finished. 

For instance, the recurrent analog neural net model of [Siegelmann, Sontag, 1991] 
(also known as the "Brain State in a Box" model) is obtained from this general 
framework as follows. For a network N with d neurons and activation values be­
tween -1 and 1, the state space is 0 = [-1, 1] d. The input domain may be chosen 
as either E = R or E = {-l,O, I} (for "online" input) or E = R n (for "batch" 
input). 

Feedforward analog neural nets may also be modeled in the same manner, except 
that in this case one may wish to select as the state set 0 := ([-1, 1] U {dormant})d, 
where dormant is a distinguished value not in [-1, 1]. This special value is used 
to indicate the state of a unit whose inputs have not all yet been available at the 
beginning of a given computation step (e.g. for units on the l-th layer of a net at 
computation steps t < 1). 

The completely different model of a network of m stochastic spiking neurons (see 
e.g. [Maass, 1997]) is also a special case of our general framework.3 

Let us then consider the effect of noise in a computational system M. Let Z (p, B) 
be a function that for each state p E 0 and Borel set B ~ 0 indicates the probability 
of noise moving state p to some state in B. The function Z is called the noise process 
affecting M, and it should satisfy the mild conditions of being a stochastic kernel, 
i.e., for each p E 0, Z(p,.) should be a probability distribution, and for each Borel 
set B, Z(-, B) should be a measurable function. 

We assume that there is some measure IL over 0 so that Z(p, ·) is absolutely contin­
uous with respect to It for each p EO, i.e. IL(B) = 0 implies Z(p, B) = 0 for every 
measurable B ~ 0 . By the Radon-Nikodym theorem, Z then possesses a density 
kernel with respect to IL, i.e. there exists a function z(·,·) such that for any state 
p E 0 and Borel set B ~ 0, Z(p, B) = JqEB z(p, q) dJL. 

We assume that this function z(',·) has values in [0,00) and is measurable. (Actu­
ally, in view of our other conditions this can be assumed without loss of generality.) 

The dynamics of a computational system M affected by a noise process Z is now 
defined as follows. 4 If the system starts in a state p, the distribution of states q 
obtained after a single computation step on input a E E is given by the density 
kernel 1f'a(P, q) = z(s(p, a), q). Note that as a composition of two measurable func-

3In this case one wants to set nsp := (U~=l [0, T)i U {not-firing})m, where T > 0 is 
a sufficiently large constant so that it suffices to consider only the firing history of the 
network during a preceding time interval of length T in order to determine whether a 
neuron fires (e.g. T = 30 ms for a biological neural system). If one partitions the time 
axis into discrete time windows [0, T) , [T, 2T) ,. .. , then in the noise-free case the firing 
events during each time window are completely determined by those in the preceding one. 
A component Pi E [0, T)i of a state in this set nsp indicates that the corresponding neuron 
i has fired exactly j times during the considered time interval, and it also specifies the j 
firing times of this neuron during this interval. Due to refractory effects one can choose 
1< 00 for biological neural systems, e.g. 1= 15 for T = 30 ms. With some straightforward 
formal operations one can also write this state set nsp as a bounded subset of Rd for 
d:= l·m. 

4We would like to thank Peter Auer for helpful conversations on this topic. 
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tions, 1ra is again a measurable function. The long-term dynamics of the system 
is given by a Markov process, where the distribution 1rza (p, q) of states after Ixal 
computation steps with input xa E E* starting in state p is defined recursively by 
1rza (p,q) = IrEo1rz(p,r) '1ra(r,q) dp,. 

Let us denote by 1rz (q) the distribution 1rz (pO,q), i.e. the distribution of states of 
M after it has processed string x, starting from the initial state pO. Let p > 0 
be the required reliability level. In the most basic version the system M accepts 
(rejects) some input x E I':o if IF 1rz (q) dll 2: ! + p (respectively ~ ~ - p). In less 
trivial cases the system may also perform pure computation steps after it has read 
all of the input. Thus, we define more generally that the system M recognizes a set 
L ~ I':o with reliability p if for any x E Eo: 

x E L ¢:> 11rzu (q) dp, 2: ~ + P for some u E {u}* 

x ¢ L ¢:> 11rzu (q) dp, ~ ~ - p for all u E {u}*. 

This covers also the case of batch input, where Ixl = 1 and Eo is typically quite 
large (e.g. Eo = Rn). 

3 Results 

The proofs of Theorems 3.1, 3.4, 3.5 require a mild continuity assumption for the 
density functions z(r,·) , which is satisfied in all concrete cases that we have exam­
ined. We do not require any global continuity property over 0 for the density func­
tions z(r,·) because there are important special cases (see [Maass, o rponen , 1996]), 
where the state space 0 is a disjoint union of subspaces 0 1 , .•• ,Ok with different 
measures on each subspace. We only assume that for some arbitrary partition of 
n into Borel sets 0 1 , ... ,Ok the density functions z(r,·) are uniformly continuous 
over each OJ , with moduli of continuity that can be bounded independently of r . 
In other words, we require that z(·, .) satisfies the following condition: 

We call a function 1r(" .) from 0 2 into R piecewise uniformly continuous if for every 
c> 0 there is a 8 > 0 such that for every rEO, and for all p, q E OJ, j = 1, ... , k: 

II p - q II ~ 8 implies 11r(r,p) - 1r(r, q)1 ~ c. (1) 

If z(',') satisfies this condition, we say that the re~mlting noise process Z is piecewise 
uniformly continuous. 

Theorem 3.1 Let L ~ I':o be a set of sequences over an arbitrary input domain 
Eo. Assume that some computational system M, affected by a piecewise uniformly 
continuous noise process Z, recognizes L with reliability p, for some arbitrary p > O. 
Then L is regular. 

The proof of Theorem 3.1 relies on an analysis of the space of probability density 
functions over the state set 0 . An upper bound on the number of states of a de­
terministic finite automaton that simulates M can be given in terms of the number 
k of components OJ of the state set 0 , the dimension and diameter of 0 , a bound 
on the values of the noise density function z , and the value of 8 for c = p/4p,(0) in 
condition (1). For details we refer to [Maass, Orponen, 1996].5 • 

'" A corresponding result is claimed in Corollary 3.1 of [Casey, 1996] for the special case 
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Remark 3.2 In stark contrast to the results of [Siegelmann, Sontag, 1991} and 
[Maass, 1996} for the noise-free case, the preceding Theorem implies that both re­
current analog neural nets and recurrent networks of spiking neurons with online 
input from ~o can only recognize regular languages in the presence of any reasonable 
type of analog noise, even if their computation time is unlimited and if they employ 
arbitrary real-valued parameters. 

Let us say that a noise process Z defined on a set 0 ~ Rd is bounded by 11 if it can 
move a state P only to other states q that have a distance $ 11 from p in the LI -norm 
over Rd , Le. if its density kernel z has the property that for any p = (PI, ... ,Pd) 
and q = (ql, ... , qd) E 0, z(p, q) > 0 implies that Iqi - Pil $ 11 for i = 1, ... , d. 
Obviously 11-bounded noise processes are a very special class. However they provide 
an example which shows that the general upper bound of Theorem 3.1 is a sense 
optimal: 

Theorem 3.3 For every regular language L ~ {-1, 1}* there is a constant 11 > 0 
such that L can be recognized with perfect reliability (i. e. p = ~) by a recurrent 
analog neural net in spite of any noise process Z bounded by 11. • 

We now consider the effect of analog noise on discrete time analog computations 
with batch-input. The proofs of Theorems 3.4 and 3.5 are quite complex (see 
[Maass, Orponen, 1996]). 

Theorem 3.4 There exists a finite upper bound for the VC-dimension of lay­
ered feedforward sigmoidal neural nets and feedforward networks of spiking neurons 
with piecewise uniformly continuous analog noise (for arbitrary real-valued inputs, 
Boolean output computed with some arbitrary reliability p > OJ and arbitrary real­
valued ''programmable parameters") which does not depend on the size or structure 
of the network beyond its first hidden layer. • 

Theorem 3.5 There exists a finite upper bound for the VC-dimension of recurrent 
sigmoidal neural nets and networks of spiking neurons with piecewise uniformly con­
tinuous analog noise (for arbitrary real valued inputs, Boolean output computed with 
some arbitrary reliability p > 0, and arbitrary real valued ''programmable parame­
ters") which does not depend on the computation time of the network, even if the 
computation time is allowed to vary for different inputs. • 

4 Conclusions 

We have introduced a new framework for the analysis of analog noise in discrete­
time analog computations that is better suited for "real-world" applications and 

of recurrent neural nets with bounded noise and p = 1/2 , i.e. for certain computations 
with perfect reliability. This case may not require the consideration of probability density 
functions. However it turns out that the proof for this special case in [Casey, 1996J is wrong. 
The proof of Corollary 3.1 in [Casey, 1996J relies on the argument that a compact set "can 
contain only a finite number of disjoint sets with Jlonempty interior" . This argument is 
wrong, as the counterexample of the intervals [1/{2i + 1), 1/2iJ for i = 1,2, ... shows. 
These infinitely many disjoint intervals are all contained in the compact set [0, 1 J . In 
addition, there is an independent problem with the structure of the proof of Corollary 3.1 
in [Casey, 1996J. It is derived as a consequence ofthe proof of Theorem 3.1 in [Casey, 1996]. 
However that proof relies on the assumption that the recurrent neural net accepts a regular 
language. Hence the proof via probability density functions in [Maass, Orponen, 1996] 
provides the first valid proof for the claim of Corollary 3.1 in [Casey, 1996]. 
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more flexible than previous models. In contrast to preceding models it also covers 
important concrete cases such as analog neural nets with a Gaussian distribution of 
noise on analog gate outputs, noisy computations with less than perfect reliability, 
and computations in networks of noisy spiking neurons. 

Furthermore we have introduced adequate mathematical tools for analyzing the 
effect of analog noise in this new framework. These tools differ quite strongly from 
those that have previously been used for the investigation of noisy computations. 
We show that they provide new bounds for the computational power and VC­
dimension of analog neural nets and networks of spiking neurons in the presence of 
analog noise. 

Finally we would like to point out that our model for noisy analog computations 
can also be applied to completely different types of models for discrete time analog 
computation than neural nets, such as arithmetical circuits, the random access 
machine (RAM) with analog inputs, the parallel random access machine (PRAM) 
with analog inputs, various computational discrete-time dynamical systems and 
(with some minor adjustments) also the BSS model [Blum, Shub, Smale, 1989]. Our 
framework provides for each of these models an adequate definition of noise-robust 
computation in the presence of analog noise, and our results provide upper bounds 
for their computational power and VC-dimension in terms of characteristica of their 
analog noise. 
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