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Abstract 

In many optimization problems, the structure of solutions reflects 
complex relationships between the different input parameters. For 
example, experience may tell us that certain parameters are closely 
related and should not be explored independently. Similarly, ex­
perience may establish that a subset of parameters must take on 
particular values. Any search of the cost landscape should take 
advantage of these relationships. We present MIMIC, a framework 
in which we analyze the global structure of the optimization land­
scape. A novel and efficient algorithm for the estimation of this 
structure is derived. We use knowledge of this structure to guide a 
randomized search through the solution space and, in turn, to re­
fine our estimate ofthe structure. Our technique obtains significant 
speed gains over other randomized optimization procedures. 

1 Introduction 

Given some cost function C(x) with local minima, we may search for the optimal 
x in many ways. Variations of gradient descent are perhaps the most popular . 
When most of the minima are far from optimal, the search must either include a 
brute-force component or incorporate randomization. Classical examples include 
Simulated Annealing (SA) and Genetic Algorithms (GAs) (Kirkpatrick, Gelatt and 
Vecchi, 1983; Holland, 1975). In all cases, in the process of optimizing C(x) many 
thousands or perhaps millions of samples of C( x) are evaluated. Most optimization 
algorithms take these millions of pieces of information, and compress them into 
a single point x-the current estimate of the solution (one notable exception are 
GAs to which we will return shortly). Imagine splitting the search process into 
two parts, both taking t/2 time steps. Both parts are structurally identical: taking 
a description of CO, they start their search from some initial point. The sole 
benefit enjoyed by the second part of the search over the first is that the initial 
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point is perhaps closer to the optimum. Intuitively, there must be some additional 
information that could be learned from the first half of the search, if only to warn 
the second half about avoidable mistakes and pitfalls. 

We present an optimization algorithm called Mutual-Information-Maximizing In­
put Clustering (MIMIC). It attempts to communicate information about the cost 
function obtained from one iteration of the search to later iterations of the search 
directly. It does this in an efficient and principled way. There are two main com­
ponents of MIMIC: first, a randomized optimization algorithm that samples from 
those regions of the input space most likely to contain the minimum for CO; second, 
an effective density estimator that can be used to capture a wide variety of struc­
ture on the input space, yet is computable from simple second order statistics on 
the data. MIMIC's results on simple cost functions indicate an order of magnitude 
improvement in performance over related approaches. Further experiments on a 
k-color map coloring problem yield similar improvements. 

2 Related Work 

Many well known optimization procedures neither represent nor utilize the struc­
ture of the optimization landscape. In contrast, Genetic Algorithms (GA) attempt 
to capture this structure by an ad hoc embedding of the parameters onto a line (the 
chromosome). The intent of the crossover operation in standard genetic algorithms 
is to preserve and propagate a group of parameters that might be partially respon­
sible for generating a favorable evaluation. Even when such groups exist, many of 
the offspring generated do not preserve the structure of these groups because the 
choice of crossover point is random. 

In problems where the benefit of a parameter is completely independent of the 
value of all other parameters, the population simply encodes information about the 
probability distribution over each parameter. In this case, the crossover operation 
is equivalent to sampling from this distribution; the more crossovers the better the 
sample. Even in problems where fitness is obtained through the combined effects of 
clusters of inputs, the GA crossover operation is beneficial only when its randomly 
chosen clusters happen to closely match the underlying structure of the problem. 
Because of the rarity of such a fortuitous occurrence, the benefit of the crossover 
operation is greatly diminished. As as result, GAs have a checkered history in 
function optimization (Baum, Boneh and Garrett, 1995; Lang, 1995). One of our 
goals is to incorporate insights from GAs in a principled optimization framework. 

There have been other attempts to capture the advantages of GAs. Population 
Based Incremental Learning (PBIL) attempts to incorporate the notion of a candi­
date population by replacing it with a single probability vector (Baluja and Caru­
ana, 1995). Each element of the vector is the probability that a particular bit in a 
solution is on. During the learning process, the probability vector can be thought 
of as a simple model of the optimization landscape. Bits whose values are firmly 
established have probabilities that are close to lor O. Those that are still unknown 
have probabilities close to 0.5 . 

When it is the structure of the components of a candidate rather than the particular 
values of the components that determines how it fares , it can be difficult to move 
PBIL's representation towards a viable solution. Nevertheless, even in these sorts 
of problems PBIL often out-performs genetic algorithms because those algorithms 
are hindered by the fact that random crossovers are infrequently beneficial. 

A very distinct, but related technique was proposed by Sabes and Jordan for a 
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reinforcement learning task (Sabes and Jordan, 1995). In their framework, the 
learner must generate actions so that a reinforcement function can be completely 
explored. Simultaneously, the learner must exploit what it has learned so as to 
optimize the long-term reward. Sabes and Jordan chose to construct a Boltzmann 

distribution from the reinforcement function: p(x) = exp~~) where R(x) is the 
reinforcement function for action X, T is the temperature, and ZT is a normalization 
factor. They use this distribution to generate actions. At high temperatures this 
distribution approaches the uniform distribution, and results in random exploration 
of RO. At low temperatures only those actions which garner large reinforcement 
are generated. By reducing T, the learner progresses from an initially randomized 
search to a more directed search about the true optimal action. Interestingly, their 
estimate for p( x) is to some extent a model of the optimization landscape which is 
constructed during the learning process. To our knowledge, Sabes and Jordan have 
neither attempted optimization over high dimensional spaces, nor attempted to fit 
p( x) with a complex model. 

3 MIMIC 

Knowing nothing else about C(x) it might not be unreasonable to search for its 
minimum by generating points from a uniform distribution over the inputs p( x). 
Such a search allows none of the information generated by previous samples to effect 
the generation of subsequent samples. Not surprisingly, much less work might be 
necessary if samples were generated from a distribution, p8(x), that is uniformly 
distributed over those x's where C(x) ~ 0 and has a probability of 0 elsewhere. For 
example, if we had access to p8 M (x) for OM = minx C( x) a single sample would be 
sufficient to find an optimum. 

This insight suggests a process of successive approximation: given a collection of 
points for which C( x) ~ 00 a density estimator for p/J o (x) is constructed. From this 
density estimator additional samples are generated, a new threshold established, 
01 = 00 - f, and a new density estimator created. The process is repeated until the 
values of C( x) cease to improve. 

The MIMIC algorithm begins by generating a random population of candidates 
choosen uniformly from the input space. From this population the median fitness 
is extracted and is denoted 00 . The algorithm then proceeds: 

1. Update the parameters of the density estimator of p/J·(x) from a sample. 

2. Generate more samples from the distribution p/J·(x). 
3. Set 0i+l equal to the Nth percentile of the data. Retain only the points 

less than Oi +1 ' 

The validity of this approach is dependent on two critical assumptions: p(\x) can 
be successfully approximated with a finite amount of data; and D(pl1-f(X)llp (x)) is 
small enough so that samples from p8(x) are also likely to be samples from p/J-f(X) 
(where D(pllq) is the Kullback-Liebler divergence between p and q). Bounds on 
these conditions can be used to prove convergence in a finite number of successive 
approximation steps. 

The performance of this approach is dependent on the nature of the density approx­
imator used. We have chosen to estimate the conditional distributions for every pair 
of parameters in the representation, a total of O( n2 ) numbers. In the next section 
we will show how we use these conditionals distributions to construct a joint dis­
tribution which is closest in the KL sense to the true joint distribution. Such an 
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approximator is capable of representing clusters of highly related parameters. While 
this might seem similar to the intuitive behavior of crossover, this representation is 
strictly more powerful. More importantly, our clusters are learned from the data, 
and are not pre-defined by the programmer. 

4 Generating Events from Conditional Probabilities 

The joint probability distribution over a set of random variables, X = {Xi}, is: 

Given only pairwise conditional probabilities, p(Xi IXj) and unconditional probabil­
ities, p(Xi), we are faced with the task of generating samples that match as closely 
as possible the true joint distribution, p(X). It is not possible to capture all possible 
joint distributions of n variables using only the unconditional and pairwise condi­
tional probabilities; however, we would like to describe the true joint distribution as 
closely as possible. Below, we derive an algorithm for choosing such a description. 

Given a permutation of the numbers between 1 and n, 7r = i1 i2 ... in, we define a 
class of probability distributions, P1l"(X): 

(2) 

The distribution P1l"(X) uses 7r as an ordering for the pairwise conditional probabili­
ties. Our goal is to choose the permutation 7r that maximizes the agreement between 
P1l"(X) and the true distribution p(X). The agreement between two distributions 
can be measured by the Kullback-Liebler divergence: 

D(pllp1l") = l p[logp - logp1l" ]dX 

= Ep[logp] - Ep[logp1l"] 
= -h(p) - Ep[logp(XilIXh)P(Xi2IXi3) . . . p(Xin_lIXi,,)p(Xin)] 
= -h(p) + h(Xi1IXi2) + h(Xh IXi3) + .. . + h(Xin_1IXiJ + h(XiJ. 

This divergence is always non-negative, with equality only in the case where p(7r) 
and p(X) are identical distributions. The optimal 7r is defined as the one that 
minimizes this divergence. For a distribution that can be completely described by 
pairwise conditional probabilities, the optimal 7r will generate a distribution that 
will be identical to the true distribution. Insofar as the true distribution cannot be 
captured this way, the optimal P1l"(X) will diverge from that distribution. 

The first term in the divergence does not depend on 7r. Therefore, the cost function, 
J1l"(X), we wish to minimize is: 

The optimal 7r is the one that produces the lowest pairwise entropy with respect 
to the true distribution. By searching over all n! permutations, it is possible to 
determine the optimal 7r. In the interests of computational efficiency, we employ a 
straightforward greedy algorithm to pick a permutation: 



428 J. S. de Bonet, C. L. Isbell and P. Viola 

1. in =:: arg minj h(Xj). 

2. ik =:: arg minj h( Xj IXik+J, where 
j t= ik+1 ... in and k =:: n - 1, n - 2, ... ,2,1. 

where hO is the empirical entropy. Once a distribution is chosen, generating samples 
is also straightforward: 

1. Choose a value for Xin based on its empirical probability P(Xin). 

2. for k =:: n - 1, n - 2, ... ,2,1, choose element Xik based on the empirical 
conditional probability P(Xik jXik+1 )· 

The first algorithm runs in time O(n2 ) and the second in time O(n2 ). 

5 Experiments 

To measure the performance of MIMIC, we performed three benchmark experiments 
and compared our results with those obtained using several standard optimization 
algorithms. 

We will use four algorithms in our comparisons: 

1. MIMIC - the algorithm above with 200 samples per iteration 

2. PBIL - standard population based incremental learning 

3. RHC - randomized hill climbing 

4. GA - a standard genetic algorithm with single crossover and 10% 
mutation rate 

5.1 Four Peaks 

The Four Peaks problem is taken from (Baluja and Caruana, 1995). Given an 
N -dimensional input vector X, the four peaks evaluation function is defined as: 

where 

I(X, T) =:: max [tail(O, X), head(l, X)] + R(X, T) 

tai/(b, X) =:: number of trailing b's in X 

head(b, X) =:: number of leading b's in X 

R(X T) = {N iftail(?,X) > T and head(l,X) > T 
, 0 otherWIse 

(4) 

(5) 

(6) 

(7) 

There are two global maxima for this function. They are achieved either when there 
are T + 1 leading l's followed by all O's or when there are T + 1 trailing O's preceded 
by all 1 'so There are also two suboptimal local maxima that occur with a string 
of all l's or all O's. For large values of T, this problem becomes increasingly more 
difficult because the basin of attraction for the inferior local maxima become larger. 

Results for running the algorithms are shown in figure 1. In all trials, T was set 
to be 10% of N, the total number of inputs . The MIMIC algorithm consistently 
maximizes the function with approximately one tenth the number of evaluations 
required by the second best algorithm. 
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Figure 1: Number of evaluations of the Four-Peak cost function for different algo­
rithms plotted for a variety of problems sizes. 

5.2 Six Peaks 

The Six Peaks problem is a slight variation on Four Peaks where 

R(X,T) = { ; 
if tai/(O,x) > T and head(l, x) > Tor 

tai/(l, x) > T and head(O, x) > T 
otherwise 

(8) 

This function has two additional global maxima where there are T + 1 leading O's 
followed by all 1 's or when there are T + 1 trailing 1 's preceded by all O's. In this 
case, it is not the values of the candidates that is important, but their structure: 
the first T + 1 positions should take on the same value, the last T + 1 positions 
should take on the same value, these two groups should take on different values, 
and the middle positions should take on all the same value. 

Results for this problem are shown in figure 2. As might be expected, PBIL per­
formed worse than on the Four Peak problem because it tends to oscillate in the 
middle of the space while contradictory signals pull it back and forth. The random 
crossover operation of the G A occasionally was able to capture some of the under­
lying structure, resulting in an improved relative performance of the GA. As we 
expected, the MIMIC algorithm was able to capture the underlying structure of the 
problem, and combine information from all the maxima. Thus MIMIC consistently 
maximizes the Six Peaks function with approximately one fiftieth the number of 
evaluations required by the other algorithms. 

5.3 Max K-Coloring 

A graph is K-Colorable if it is possible to assign one of k colors to each of the 
nodes of the graph such that no adjacent nodes have the same color. Determining 
whether a graph is K-Colorable is known to be NP-Complete. Here, we define 
Max K-Coloring to be the task of finding a coloring that minimizes the number of 
adjacent pairs colored the same. 

Results for this problem are shown in figure 2. We used a subset of graphs with 
a single solution (up to permutations of color) so that the optimal solution is de­
pendent only on the structure of the parameters. Because of this, PBIL performs 
poorly. GA's perform better because any crossover point is representative of some of 
the underlying structure of the graphs used. Finally, MIMIC performs best because 
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Function Evaluations Required to Maximize K-Coloring 
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Figure 2: Number of evaluations of the Six-Peak cost function (left) and the K-Color 
cost function (right) for a variety of problem sizes. 

it is able to capture all of the structural regularity within the inputs. 

6 Conclusions 

We have described MIMIC, a novel optimization algorithm that converges faster 
and more reliably than several other existing algorithms. MIMIC accomplishes this 
in two ways. First, it performs optimization by successively approximating the con­
ditional distribution of the inputs given a bound on the cost function. Throughout 
this process , the optimum of the cost function becomes gradually more likely. As a 
result, MIMIC directly communicates information about the cost function from the 
early stages to the later stages of the search. Second, MIMIC attempts to discover 
common underlying structure about optima by computing second-order statistics 
and sampling from a distribution consistent with those statistics. 
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