
MIMIC: Finding Optima by Estimating
Probability Densities

Jeremy S. De Bonet, Charles L. Isbell, Jr., Paul Viola
Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge, MA 02139

Abstract

In many optimization problems, the structure of solutions reflects
complex relationships between the different input parameters. For
example, experience may tell us that certain parameters are closely
related and should not be explored independently. Similarly, ex­
perience may establish that a subset of parameters must take on
particular values. Any search of the cost landscape should take
advantage of these relationships. We present MIMIC, a framework
in which we analyze the global structure of the optimization land­
scape. A novel and efficient algorithm for the estimation of this
structure is derived. We use knowledge of this structure to guide a
randomized search through the solution space and, in turn, to re­
fine our estimate ofthe structure. Our technique obtains significant
speed gains over other randomized optimization procedures.

1 Introduction

Given some cost function C(x) with local minima, we may search for the optimal
x in many ways. Variations of gradient descent are perhaps the most popular .
When most of the minima are far from optimal, the search must either include a
brute-force component or incorporate randomization. Classical examples include
Simulated Annealing (SA) and Genetic Algorithms (GAs) (Kirkpatrick, Gelatt and
Vecchi, 1983; Holland, 1975). In all cases, in the process of optimizing C(x) many
thousands or perhaps millions of samples of C(x) are evaluated. Most optimization
algorithms take these millions of pieces of information, and compress them into
a single point x-the current estimate of the solution (one notable exception are
GAs to which we will return shortly). Imagine splitting the search process into
two parts, both taking t/2 time steps. Both parts are structurally identical: taking
a description of CO, they start their search from some initial point. The sole
benefit enjoyed by the second part of the search over the first is that the initial

MIMIC: Finding Optima by Estimating Probability Densities 425

point is perhaps closer to the optimum. Intuitively, there must be some additional
information that could be learned from the first half of the search, if only to warn
the second half about avoidable mistakes and pitfalls.

We present an optimization algorithm called Mutual-Information-Maximizing In­
put Clustering (MIMIC). It attempts to communicate information about the cost
function obtained from one iteration of the search to later iterations of the search
directly. It does this in an efficient and principled way. There are two main com­
ponents of MIMIC: first, a randomized optimization algorithm that samples from
those regions of the input space most likely to contain the minimum for CO; second,
an effective density estimator that can be used to capture a wide variety of struc­
ture on the input space, yet is computable from simple second order statistics on
the data. MIMIC's results on simple cost functions indicate an order of magnitude
improvement in performance over related approaches. Further experiments on a
k-color map coloring problem yield similar improvements.

2 Related Work

Many well known optimization procedures neither represent nor utilize the struc­
ture of the optimization landscape. In contrast, Genetic Algorithms (GA) attempt
to capture this structure by an ad hoc embedding of the parameters onto a line (the
chromosome). The intent of the crossover operation in standard genetic algorithms
is to preserve and propagate a group of parameters that might be partially respon­
sible for generating a favorable evaluation. Even when such groups exist, many of
the offspring generated do not preserve the structure of these groups because the
choice of crossover point is random.

In problems where the benefit of a parameter is completely independent of the
value of all other parameters, the population simply encodes information about the
probability distribution over each parameter. In this case, the crossover operation
is equivalent to sampling from this distribution; the more crossovers the better the
sample. Even in problems where fitness is obtained through the combined effects of
clusters of inputs, the GA crossover operation is beneficial only when its randomly
chosen clusters happen to closely match the underlying structure of the problem.
Because of the rarity of such a fortuitous occurrence, the benefit of the crossover
operation is greatly diminished. As as result, GAs have a checkered history in
function optimization (Baum, Boneh and Garrett, 1995; Lang, 1995). One of our
goals is to incorporate insights from GAs in a principled optimization framework.

There have been other attempts to capture the advantages of GAs. Population
Based Incremental Learning (PBIL) attempts to incorporate the notion of a candi­
date population by replacing it with a single probability vector (Baluja and Caru­
ana, 1995). Each element of the vector is the probability that a particular bit in a
solution is on. During the learning process, the probability vector can be thought
of as a simple model of the optimization landscape. Bits whose values are firmly
established have probabilities that are close to lor O. Those that are still unknown
have probabilities close to 0.5 .

When it is the structure of the components of a candidate rather than the particular
values of the components that determines how it fares , it can be difficult to move
PBIL's representation towards a viable solution. Nevertheless, even in these sorts
of problems PBIL often out-performs genetic algorithms because those algorithms
are hindered by the fact that random crossovers are infrequently beneficial.

A very distinct, but related technique was proposed by Sabes and Jordan for a

426 J. S. de Bonet, C. L. Isbell and P. WoLa

reinforcement learning task (Sabes and Jordan, 1995). In their framework, the
learner must generate actions so that a reinforcement function can be completely
explored. Simultaneously, the learner must exploit what it has learned so as to
optimize the long-term reward. Sabes and Jordan chose to construct a Boltzmann

distribution from the reinforcement function: p(x) = exp~~) where R(x) is the
reinforcement function for action X, T is the temperature, and ZT is a normalization
factor. They use this distribution to generate actions. At high temperatures this
distribution approaches the uniform distribution, and results in random exploration
of RO. At low temperatures only those actions which garner large reinforcement
are generated. By reducing T, the learner progresses from an initially randomized
search to a more directed search about the true optimal action. Interestingly, their
estimate for p(x) is to some extent a model of the optimization landscape which is
constructed during the learning process. To our knowledge, Sabes and Jordan have
neither attempted optimization over high dimensional spaces, nor attempted to fit
p(x) with a complex model.

3 MIMIC

Knowing nothing else about C(x) it might not be unreasonable to search for its
minimum by generating points from a uniform distribution over the inputs p(x).
Such a search allows none of the information generated by previous samples to effect
the generation of subsequent samples. Not surprisingly, much less work might be
necessary if samples were generated from a distribution, p8(x), that is uniformly
distributed over those x's where C(x) ~ 0 and has a probability of 0 elsewhere. For
example, if we had access to p8 M (x) for OM = minx C(x) a single sample would be
sufficient to find an optimum.

This insight suggests a process of successive approximation: given a collection of
points for which C(x) ~ 00 a density estimator for p/J o (x) is constructed. From this
density estimator additional samples are generated, a new threshold established,
01 = 00 - f, and a new density estimator created. The process is repeated until the
values of C(x) cease to improve.

The MIMIC algorithm begins by generating a random population of candidates
choosen uniformly from the input space. From this population the median fitness
is extracted and is denoted 00 . The algorithm then proceeds:

1. Update the parameters of the density estimator of p/J·(x) from a sample.

2. Generate more samples from the distribution p/J·(x).
3. Set 0i+l equal to the Nth percentile of the data. Retain only the points

less than Oi +1 '

The validity of this approach is dependent on two critical assumptions: p(\x) can
be successfully approximated with a finite amount of data; and D(pl1-f(X)llp (x)) is
small enough so that samples from p8(x) are also likely to be samples from p/J-f(X)
(where D(pllq) is the Kullback-Liebler divergence between p and q). Bounds on
these conditions can be used to prove convergence in a finite number of successive
approximation steps.

The performance of this approach is dependent on the nature of the density approx­
imator used. We have chosen to estimate the conditional distributions for every pair
of parameters in the representation, a total of O(n2) numbers. In the next section
we will show how we use these conditionals distributions to construct a joint dis­
tribution which is closest in the KL sense to the true joint distribution. Such an

MIMIC: Finding Optima by Estimating Probability Densities 427

approximator is capable of representing clusters of highly related parameters. While
this might seem similar to the intuitive behavior of crossover, this representation is
strictly more powerful. More importantly, our clusters are learned from the data,
and are not pre-defined by the programmer.

4 Generating Events from Conditional Probabilities

The joint probability distribution over a set of random variables, X = {Xi}, is:

Given only pairwise conditional probabilities, p(Xi IXj) and unconditional probabil­
ities, p(Xi), we are faced with the task of generating samples that match as closely
as possible the true joint distribution, p(X). It is not possible to capture all possible
joint distributions of n variables using only the unconditional and pairwise condi­
tional probabilities; however, we would like to describe the true joint distribution as
closely as possible. Below, we derive an algorithm for choosing such a description.

Given a permutation of the numbers between 1 and n, 7r = i1 i2 ... in, we define a
class of probability distributions, P1l"(X):

(2)

The distribution P1l"(X) uses 7r as an ordering for the pairwise conditional probabili­
ties. Our goal is to choose the permutation 7r that maximizes the agreement between
P1l"(X) and the true distribution p(X). The agreement between two distributions
can be measured by the Kullback-Liebler divergence:

D(pllp1l") = l p[logp - logp1l"]dX

= Ep[logp] - Ep[logp1l"]
= -h(p) - Ep[logp(XilIXh)P(Xi2IXi3) . . . p(Xin_lIXi,,)p(Xin)]
= -h(p) + h(Xi1IXi2) + h(Xh IXi3) + .. . + h(Xin_1IXiJ + h(XiJ.

This divergence is always non-negative, with equality only in the case where p(7r)
and p(X) are identical distributions. The optimal 7r is defined as the one that
minimizes this divergence. For a distribution that can be completely described by
pairwise conditional probabilities, the optimal 7r will generate a distribution that
will be identical to the true distribution. Insofar as the true distribution cannot be
captured this way, the optimal P1l"(X) will diverge from that distribution.

The first term in the divergence does not depend on 7r. Therefore, the cost function,
J1l"(X), we wish to minimize is:

The optimal 7r is the one that produces the lowest pairwise entropy with respect
to the true distribution. By searching over all n! permutations, it is possible to
determine the optimal 7r. In the interests of computational efficiency, we employ a
straightforward greedy algorithm to pick a permutation:

428 J. S. de Bonet, C. L. Isbell and P. Viola

1. in =:: arg minj h(Xj).

2. ik =:: arg minj h(Xj IXik+J, where
j t= ik+1 ... in and k =:: n - 1, n - 2, ... ,2,1.

where hO is the empirical entropy. Once a distribution is chosen, generating samples
is also straightforward:

1. Choose a value for Xin based on its empirical probability P(Xin).

2. for k =:: n - 1, n - 2, ... ,2,1, choose element Xik based on the empirical
conditional probability P(Xik jXik+1)·

The first algorithm runs in time O(n2) and the second in time O(n2).

5 Experiments

To measure the performance of MIMIC, we performed three benchmark experiments
and compared our results with those obtained using several standard optimization
algorithms.

We will use four algorithms in our comparisons:

1. MIMIC - the algorithm above with 200 samples per iteration

2. PBIL - standard population based incremental learning

3. RHC - randomized hill climbing

4. GA - a standard genetic algorithm with single crossover and 10%
mutation rate

5.1 Four Peaks

The Four Peaks problem is taken from (Baluja and Caruana, 1995). Given an
N -dimensional input vector X, the four peaks evaluation function is defined as:

where

I(X, T) =:: max [tail(O, X), head(l, X)] + R(X, T)

tai/(b, X) =:: number of trailing b's in X

head(b, X) =:: number of leading b's in X

R(X T) = {N iftail(?,X) > T and head(l,X) > T
, 0 otherWIse

(4)

(5)

(6)

(7)

There are two global maxima for this function. They are achieved either when there
are T + 1 leading l's followed by all O's or when there are T + 1 trailing O's preceded
by all 1 'so There are also two suboptimal local maxima that occur with a string
of all l's or all O's. For large values of T, this problem becomes increasingly more
difficult because the basin of attraction for the inferior local maxima become larger.

Results for running the algorithms are shown in figure 1. In all trials, T was set
to be 10% of N, the total number of inputs . The MIMIC algorithm consistently
maximizes the function with approximately one tenth the number of evaluations
required by the second best algorithm.

MIMIC: Finding Optima by Estimating Probability Densities

Function Evaluations Required to Maximize 4 Peaks
1200.--~-~--~-~----,

~ I ()()() • MIMIC
o
.~ 0 PBIL
~ 800 x RHC
& • GA
~ 600 '------"
il
~400
5

~ 200l::=;;~~~~~:::::=J
o 40 50 60 70 80

Inputs

429

Figure 1: Number of evaluations of the Four-Peak cost function for different algo­
rithms plotted for a variety of problems sizes.

5.2 Six Peaks

The Six Peaks problem is a slight variation on Four Peaks where

R(X,T) = { ;
if tai/(O,x) > T and head(l, x) > Tor

tai/(l, x) > T and head(O, x) > T
otherwise

(8)

This function has two additional global maxima where there are T + 1 leading O's
followed by all 1 's or when there are T + 1 trailing 1 's preceded by all O's. In this
case, it is not the values of the candidates that is important, but their structure:
the first T + 1 positions should take on the same value, the last T + 1 positions
should take on the same value, these two groups should take on different values,
and the middle positions should take on all the same value.

Results for this problem are shown in figure 2. As might be expected, PBIL per­
formed worse than on the Four Peak problem because it tends to oscillate in the
middle of the space while contradictory signals pull it back and forth. The random
crossover operation of the G A occasionally was able to capture some of the under­
lying structure, resulting in an improved relative performance of the GA. As we
expected, the MIMIC algorithm was able to capture the underlying structure of the
problem, and combine information from all the maxima. Thus MIMIC consistently
maximizes the Six Peaks function with approximately one fiftieth the number of
evaluations required by the other algorithms.

5.3 Max K-Coloring

A graph is K-Colorable if it is possible to assign one of k colors to each of the
nodes of the graph such that no adjacent nodes have the same color. Determining
whether a graph is K-Colorable is known to be NP-Complete. Here, we define
Max K-Coloring to be the task of finding a coloring that minimizes the number of
adjacent pairs colored the same.

Results for this problem are shown in figure 2. We used a subset of graphs with
a single solution (up to permutations of color) so that the optimal solution is de­
pendent only on the structure of the parameters. Because of this, PBIL performs
poorly. GA's perform better because any crossover point is representative of some of
the underlying structure of the graphs used. Finally, MIMIC performs best because

430

Function Evaluations Required to Maximize 6 Peaks
1300r---~--~-~--~---'

",1200
e
o
·~1000
.a
'" W 800

• MIMIC
o PBIL
x RHC
+ GA

'Cl L--_--'

~600
§
~ 400 o

~ 200

o 20 30 40 50 60
Inputs

J. S. de Bonet, C. L. Isbell and P. Vwla

Function Evaluations Required to Maximize K-Coloring
1200r---~-~-~-~-~---..

:gIOOO
o

.;:1

'" ~ 800
W
'Cl 600
~
~400 g
~ 200

• MIMIC
o PBIL
x RHC
+ GA

40

Figure 2: Number of evaluations of the Six-Peak cost function (left) and the K-Color
cost function (right) for a variety of problem sizes.

it is able to capture all of the structural regularity within the inputs.

6 Conclusions

We have described MIMIC, a novel optimization algorithm that converges faster
and more reliably than several other existing algorithms. MIMIC accomplishes this
in two ways. First, it performs optimization by successively approximating the con­
ditional distribution of the inputs given a bound on the cost function. Throughout
this process , the optimum of the cost function becomes gradually more likely. As a
result, MIMIC directly communicates information about the cost function from the
early stages to the later stages of the search. Second, MIMIC attempts to discover
common underlying structure about optima by computing second-order statistics
and sampling from a distribution consistent with those statistics.

Acknowledgments

In this research, Jeremy De Bonet is supported by the DOD Multidisciplinary Re­
search Program of the University Research Initiative, Charles Isbell by a fellowship
granted by AT&T Labs-Research, and Paul Viola by Office of Naval Research Grant
No. N00014-96-1-0311. Greg Galperin helped in the preparation of this paper.

References

Baluja, S. and Caruana, R. (1995). Removing the genetics from the standard genetic
algorithm. Technical report, Carnegie Mellon Univerisity.

Baum, E. B., Boneh, D., and Garrett, C. (1995). Where genetic algorithms excel. In Pro­
ceedings of the Conference on Computational Learning Theory, New York. Association
for Computing Machinery.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. The Michigan Uni­
versity Press.

Kirkpatrick, S., Gelatt, C., and Vecchi, M. (1983). Optimization by Simulated Annealing.
Science, 220(4598):671-680.

Lang, K. (1995). Hill climbing beats genetic search on a boolean circuit synthesis problem
of koza's. In Twelfth International Conference on Machine Learning.

Sabes, P. N. and Jordan, M. 1. (1995). Reinforcement learning by probability matching . In
David S. Touretzky, M. M. and Perrone, M., editors, Advances in Neural Information
Processing, volume 8, Denver 1995. MIT Press, Cambridge.

