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Abstract 

Multilayer architectures such as those used in Bayesian belief net­
works and Helmholtz machines provide a powerful framework for 
representing and learning higher order statistical relations among 
inputs. Because exact probability calculations with these mod­
els are often intractable, there is much interest in finding approxi­
mate algorithms. We present an algorithm that efficiently discovers 
higher order structure using EM and Gibbs sampling. The model 
can be interpreted as a stochastic recurrent network in which ambi­
guity in lower-level states is resolved through feedback from higher 
levels. We demonstrate the performance of the algorithm on bench­
mark problems. 

1 Introduction 

Discovering high order structure in patterns is one of the keys to performing complex 
recognition and discrimination tasks. Many real world patterns have a hierarchical 
underlying structure in which simple features have a higher order structure among 
themselves. Because these relationships are often statistical in nature, it is natural 
to view the process of discovering such structures as a statistical inference problem 
in which a hierarchical model is fit to data. 

Hierarchical statistical structure can be conveniently represented with Bayesian 
belief networks (Pearl, 1988; Lauritzen and Spiegelhalter, 1988; Neal, 1992). These 
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models are powerful, because they can capture complex statistical relationships 
among the data variables, and also mathematically convenient, because they allow 
efficient computation of the joint probability for any given set of model parameters. 
The joint probability density of a network of binary states is given by a product of 
conditional probabilities 

(1) 

where W is the weight matrix that parameterizes the model. Note that the prob­
ability of an individual state Si depends only on its parents. This probability is 
given by 

P(Si = 1lpa[Si], W) = h(L SjWji) 
j 

where Wji is the weight from Sj to Si (Wji = 0 for j < i). 

(2) 

The weights specify a hierarchical prior on the input states, which are the fixed 
subset of states at the lowest layer of units. The active parents of state Si represent 
the underlying causes of that state. The function h specifies how these causes are 
combined to give the probability of Si. We assume h to be the "noisy OR" function, 
h(u) = 1 - exp( -u), u >= O. 

2 Learning Objective 

The learning objective is to adapt W to find the most probable explanation of the 
input patterns. The probability of the input data is 

(3) 
n 

P(Dn IW) is computed by marginalizing over all states of the network 

P(DnIW) = L P(DnISk, W)P(SkIW) (4) 
k 

Because the number of different states, Sk, is exponential in the number of units, 
computing the sum exactly is intractable and must be approximated. The nature 
of the learning tasks discussed here, however, allow us to make accurate approxi­
mations. A desirable property for representations is that most patterns have just 
one or a few possible explanations. In this case, all but a few terms P(Dn ISk, W) 
will be zero, and, as described below, it becomes feasible to use sampling based 
methods which select Sk according to P(SkIDn, W). 

3 Inferring the Internal Representation 

Given the input data, finding its most likely explanation is an inference process. 
Although it is simple to calculate the probability of any particular network state, 
there is no simple way to determine the most probable state given input D. A 
general approach to this problem is Gibbs sampling (Pearl, 1988; Neal, 1992). 
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In Gibbs sampling, each state Si of the network is updated iteratively according to 
the probability of Si given the remaining states in the network. This conditional 
probability can be computed using 

P(SiISj : j::l i, W) oc P(Silpa[Si], W) II P(Sjlpa[Sj],Si' W) (5) 
jEch[S.] 

where ch[Sil indicates the children of state Si. In the limit, the ensemble of states 
obtained by this procedure will be typical samples from P(SID, W). More generally, 
any subset of states can be fixed and the rest sampled. 

The Gibbs equations have an interpretation in terms of a stochastic recurrent neural 
network in which feedback from higher levels influences the states at lower levels. 
For the models defined here, the probability of Si changing state given the remaining 
states is 

(6) 

The variable D-xi indicates how much changing the state Si changes the probability 
of the network state 

~xi=logh(ui;l-Si)-logh(ui;Si)+ L logh(uj+bij;Sj)-logh(uj;Sj) (7) 
jEch[S;] 

where h(u; a) = h(u) if a = 1 and 1 - h(u) if a = o. The variable Ui is the causal 
input to Si, given by l:k SkWki. The variable bj specifies the change in Uj for a 
change in Si: bij = +SjWij if Si = 0 and -SjWij if Si = 1. 

The first two terms in (7) can be interpreted as the feedback from higher levels. The 
sum can be interpreted as the feedforward input from the children of Si. Feedback 
allows the lower level units to use information only computable at higher levels. The 
feedforward terms typically dominate the expression, but the feedback becomes the 
determining factor when the feedforward input is ambiguous. 

For general distributions, Gibbs sampling can require many samples to achieve a 
representative samples. But if there is little ambiguity in the internal representation, 
as is the goal, Gibbs sampling can be as efficient as a single feedforward pass. One 
potential problem is that Gibbs sampling will not work before the weights have 
adapted, when the representations are highly ambiguous. We show below, however, 
that it is not necessary to sample for long periods in order for good representations 
to be learned. As learning proceeds, the internal representations obtained with 
limited Gibbs sampling become increasingly accurate. 

4 Adapting the Weights 

The complexity of the model is controlled by placing a prior on the weights. For 
the form of the noisy OR function in which all weights are constrained to be pos­
itive, we assume the prior to be the product of independent gamma distributions 
parameterized by 0: and {3. The objective function becomes 

C = P(D 1:N IW)P(Wlo:, {3) (8) 

A simple and efficient EM-type formula for adapt the weights can be derived by 
setting aCjwij to zero and solving for Wij. Using the transformations iij = 1 -
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exp( -Wij) and 9i = 1 - exp( -Ui) we obtain 

(9) 

where s(n) is the state obtained with Gibbs sampling for the nth input pattern. 
The variable Iij can be interpreted as the frequency of state Sj given cause Si. The 
sum in the above expression is a weighted average of the number of times Sj was 
active when Si was active. The ratio hj /9j weights each term in the sum inversely 
according to the number of different causes for Sj. If Si is the unique cause of Sj 
then hj = 9j and the term would have full weight. 

A straightforward application of the learning algorithm would adapt all the weights 
at the same time. This does not produce good results, however, because there 
is nothing to prevent the model from learning overly strong priors. This can be 
prevented by adapting the weights in the upper levels after the weights in the lower 
levels have stabilized. This allows the higher levels to adapt to structure that is 
actually present in the data. We have obtained good results from both the naive 
method of adapting the lowest layers first and from more sophisticated methods 
where stability was based on how often a unit changed during the Gibbs sampling. 

5 Examples 

In the following examples, the weight prior was specified with a = 1.0 and {3 = 1.5. 
Weights were set to random values between 0.05 and 0.15. Gibbs sampling was 
stopped if the maximum state change probability was less than 0.05 or after 15 
sweeps through the units. Weights were reestimated after blocks of 200 patterns. 
Each layer of weights was adapted for 10 epochs before adapting the next layer. 

A High Order Lines Problem. The first example illustrates that the algorithm 
can discover the underlying features in complicated patterns and that the higher 
layers can capture interesting higher order structure. The first dataset is a variant of 
the lines problem proposed by Foldiak (1989) . The patterns in the dataset are com­
posed of horizontal and vertical lines as illustrated in figure 1. Note that, although 

B 

Figure 1: Dataset for the high order lines problem. (A) Patterns are generated by 
selecting one of the pattern types according to the probabilities next to the arrows. Top 
patterns are copied to the input. The horizontal and vertical lines on the left are selected 
with probability 0.3. (B) Typical input patterns. 
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the datasets are displayed on a 2-D grid, the network makes no assumptions about 
topography. Because the network is fully connected, all spatial arrangements of the 
inputs are identical. The weights learned by the network are shown in figure 2. 

I'~ 1.111:1 ~·I·II:I:l:I:I:II.I·~tl.II:~:I·I:1 

__ -.... IIlImmll 
1111111111 

Figure 2: The weights in a 25-10-5 network after training. Blocks indicate the weights to 
each unit. Square size is proportional to the weight values. Second layer units capture the 
structure of the horizontal and vertical lines. Third layer units capture the correlations 
among the lines. The first unit in the third layer is active when the 'II' is present. The 
second, fourth, and fifth units have learned to represent the '+', '=', and '0' respectively, 
with the remaining unit acting as a bias. 

The Shifter Problem. The shifter problem (Hinton and Sejnowski, 1986), ex­
plained in figure 3, is important because the structure that must be discovered is in 
the higher order input correlations. This example also illustrates the importance of 
allowing high level states to influence low level states to determine the most proba­
ble internal representation. The units in the second layer can only capture second 
order statistics and cannot determine the direction of the shift. The only way these 
units can be disambiguated is to use the feedback from the units in the third layer 
which detect the direction of the shift by integrating the output of the units in 
the second layer. This allows the representation in the second layer to be "cleaned 
up" and makes it easier to discover the higher order structure of the global shift. 
The speed and reliability of the learning was tested by learning from random initial 
conditions. The results are shown in figure 4. Note that the best solutions have a 
cost of about one bit higher than the optimal cost of less than 9 bits, because top 
units cannot capture the fact that they are mutually exclusive. 

6 Discussion 

The methods we have described work well on these simple benchmark problems 
and scale well to larger problems such as the handwritten digits example used in 
(Hinton et al., 1995). We believe there are two main reasons why the algorithm 
described here runs considerably faster than other Gibbs sampling based methods. 
The first is that there is no need to collect state statistics for each pattern. The 
weight values are reestimated using just one sampled internal state per pattern. The 
second is that weights that are not connected to informative units are not updated. 
This prevents the model from learning what are effectively overly strong priors and 
allows the weights in upper layers to adapt to structure actually in the data. 

Gibbs sampling allows internal representations to be selected according to their true 
posterior probability. This was shown to be effective in cases where the resulting 
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Figure 3: The shifter problem. (A) Input patterns are generated by generating a random 
binary vector in the bottom row. This pattern is shifted either left or right (with wrap 
around) with equal probability and copied to the top row. The input rows are duplicated 
to add redundancy as in Dayan et al. (1995). (B) The weights of a 32-20-2 after learning. 
The second layer of units learn to detect either local left shifts or right shifts in the data. 
These units cannot determine the shift direction alone, however, and require feedback from 
third layer units which integrate the outputs of all the units that represent a common shift 
(note that there is no overlap in the weights for the two third-layer units) . This feedback 
turns off units that are inconsistent with the direction of shift. The weights that are close 
to zero for both third layer units effectively remove redundant second layer units that are 
not required to represent the input patterns. 

~w-----~------~----~-------.------. 

~~-----I~O------~15------~ro~-----2~5----~~ 

Number of Epochs 

Figure 4: The graph shows 10 runs on the shifter problem from random initial conditions. 
The average bits per pattern is computed by -log(C)/(Nlog2). Each epoch used 200 
input randomly generated input patterns. Two additional epochs were performed with 
1000 random patterns to obtain accurate estimates of the average bits per pattern. The 
network converges rapidly and reliably. The best solutions, like the one shown in figure 3b, 
were found in 4/10 runs and had costs of approximately 10 bits at epoch 30. In this 
example, the network can get caught in local minima if too many units learn to represent 
the same local shifts. 
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representation has little ambiguity, i.e. each pattern has only a small number of 
probable explanations. If the causal structure to be learned is inherently ambiguous, 
e.g. in modeling the causal structure of medical symptoms, Gibbs sampling will be 
slow and better performance can be obtained with wake-sleep learning (Hinton 
et al., 1995; Frey et al., 1995) or mean field approximations (Saul et al., 1996). 

There are many natural situations when there is ambiguity in low level features. 
This ambiguity can only be resolved by integrating the contextual information which 
itself is derived from the ambiguous simple features. This problem is common in 
the case of noisy input patterns and in feature grouping problems such as figure­
ground separation. Feedback is crucial for ensuring that low-level representations 
are consistent within the larger context. 

Some systems, such as the Helmholtz machine (Dayan et al., 1995; Hinton et al., 
1995) , arrive at the internal state through a feedforward process. It possible that this 
ambiguity in lower-level representations could be resolved by circuitry in the higher­
level representations, but if multiple higher-level modules make use of the same low­
level representations, the additional circuitry would have to be duplicated in each 
module. It seems more parsimonious to use feedback to influence the formation of 
the lower-level representations. 
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