
Bayesian Unsupervised Learning of
Higher Order Structure

Michael S. Lewicki Terrence J. Sejnowski
levicki~salk.edu terry~salk.edu

The Salk Institute
Howard Hughes Medical Institute
Computational Neurobiology Lab

10010 N. Torrey Pines Rd.
La Jolla, CA 92037

Abstract

Multilayer architectures such as those used in Bayesian belief net­
works and Helmholtz machines provide a powerful framework for
representing and learning higher order statistical relations among
inputs. Because exact probability calculations with these mod­
els are often intractable, there is much interest in finding approxi­
mate algorithms. We present an algorithm that efficiently discovers
higher order structure using EM and Gibbs sampling. The model
can be interpreted as a stochastic recurrent network in which ambi­
guity in lower-level states is resolved through feedback from higher
levels. We demonstrate the performance of the algorithm on bench­
mark problems.

1 Introduction

Discovering high order structure in patterns is one of the keys to performing complex
recognition and discrimination tasks. Many real world patterns have a hierarchical
underlying structure in which simple features have a higher order structure among
themselves. Because these relationships are often statistical in nature, it is natural
to view the process of discovering such structures as a statistical inference problem
in which a hierarchical model is fit to data.

Hierarchical statistical structure can be conveniently represented with Bayesian
belief networks (Pearl, 1988; Lauritzen and Spiegelhalter, 1988; Neal, 1992). These

530 M. S. Lewicki and T. 1. Sejnowski

models are powerful, because they can capture complex statistical relationships
among the data variables, and also mathematically convenient, because they allow
efficient computation of the joint probability for any given set of model parameters.
The joint probability density of a network of binary states is given by a product of
conditional probabilities

(1)

where W is the weight matrix that parameterizes the model. Note that the prob­
ability of an individual state Si depends only on its parents. This probability is
given by

P(Si = 1lpa[Si], W) = h(L SjWji)
j

where Wji is the weight from Sj to Si (Wji = 0 for j < i).

(2)

The weights specify a hierarchical prior on the input states, which are the fixed
subset of states at the lowest layer of units. The active parents of state Si represent
the underlying causes of that state. The function h specifies how these causes are
combined to give the probability of Si. We assume h to be the "noisy OR" function,
h(u) = 1 - exp(-u), u >= O.

2 Learning Objective

The learning objective is to adapt W to find the most probable explanation of the
input patterns. The probability of the input data is

(3)
n

P(Dn IW) is computed by marginalizing over all states of the network

P(DnIW) = L P(DnISk, W)P(SkIW) (4)
k

Because the number of different states, Sk, is exponential in the number of units,
computing the sum exactly is intractable and must be approximated. The nature
of the learning tasks discussed here, however, allow us to make accurate approxi­
mations. A desirable property for representations is that most patterns have just
one or a few possible explanations. In this case, all but a few terms P(Dn ISk, W)
will be zero, and, as described below, it becomes feasible to use sampling based
methods which select Sk according to P(SkIDn, W).

3 Inferring the Internal Representation

Given the input data, finding its most likely explanation is an inference process.
Although it is simple to calculate the probability of any particular network state,
there is no simple way to determine the most probable state given input D. A
general approach to this problem is Gibbs sampling (Pearl, 1988; Neal, 1992).

Bayesian Unsupervised Learning of Higher Order Structure 531

In Gibbs sampling, each state Si of the network is updated iteratively according to
the probability of Si given the remaining states in the network. This conditional
probability can be computed using

P(SiISj : j::l i, W) oc P(Silpa[Si], W) II P(Sjlpa[Sj],Si' W) (5)
jEch[S.]

where ch[Sil indicates the children of state Si. In the limit, the ensemble of states
obtained by this procedure will be typical samples from P(SID, W). More generally,
any subset of states can be fixed and the rest sampled.

The Gibbs equations have an interpretation in terms of a stochastic recurrent neural
network in which feedback from higher levels influences the states at lower levels.
For the models defined here, the probability of Si changing state given the remaining
states is

(6)

The variable D-xi indicates how much changing the state Si changes the probability
of the network state

~xi=logh(ui;l-Si)-logh(ui;Si)+ L logh(uj+bij;Sj)-logh(uj;Sj) (7)
jEch[S;]

where h(u; a) = h(u) if a = 1 and 1 - h(u) if a = o. The variable Ui is the causal
input to Si, given by l:k SkWki. The variable bj specifies the change in Uj for a
change in Si: bij = +SjWij if Si = 0 and -SjWij if Si = 1.

The first two terms in (7) can be interpreted as the feedback from higher levels. The
sum can be interpreted as the feedforward input from the children of Si. Feedback
allows the lower level units to use information only computable at higher levels. The
feedforward terms typically dominate the expression, but the feedback becomes the
determining factor when the feedforward input is ambiguous.

For general distributions, Gibbs sampling can require many samples to achieve a
representative samples. But if there is little ambiguity in the internal representation,
as is the goal, Gibbs sampling can be as efficient as a single feedforward pass. One
potential problem is that Gibbs sampling will not work before the weights have
adapted, when the representations are highly ambiguous. We show below, however,
that it is not necessary to sample for long periods in order for good representations
to be learned. As learning proceeds, the internal representations obtained with
limited Gibbs sampling become increasingly accurate.

4 Adapting the Weights

The complexity of the model is controlled by placing a prior on the weights. For
the form of the noisy OR function in which all weights are constrained to be pos­
itive, we assume the prior to be the product of independent gamma distributions
parameterized by 0: and {3. The objective function becomes

C = P(D 1:N IW)P(Wlo:, {3) (8)

A simple and efficient EM-type formula for adapt the weights can be derived by
setting aCjwij to zero and solving for Wij. Using the transformations iij = 1 -

532 M. S. Lewicki and T. 1. Sejnowski

exp(-Wij) and 9i = 1 - exp(-Ui) we obtain

(9)

where s(n) is the state obtained with Gibbs sampling for the nth input pattern.
The variable Iij can be interpreted as the frequency of state Sj given cause Si. The
sum in the above expression is a weighted average of the number of times Sj was
active when Si was active. The ratio hj /9j weights each term in the sum inversely
according to the number of different causes for Sj. If Si is the unique cause of Sj
then hj = 9j and the term would have full weight.

A straightforward application of the learning algorithm would adapt all the weights
at the same time. This does not produce good results, however, because there
is nothing to prevent the model from learning overly strong priors. This can be
prevented by adapting the weights in the upper levels after the weights in the lower
levels have stabilized. This allows the higher levels to adapt to structure that is
actually present in the data. We have obtained good results from both the naive
method of adapting the lowest layers first and from more sophisticated methods
where stability was based on how often a unit changed during the Gibbs sampling.

5 Examples

In the following examples, the weight prior was specified with a = 1.0 and {3 = 1.5.
Weights were set to random values between 0.05 and 0.15. Gibbs sampling was
stopped if the maximum state change probability was less than 0.05 or after 15
sweeps through the units. Weights were reestimated after blocks of 200 patterns.
Each layer of weights was adapted for 10 epochs before adapting the next layer.

A High Order Lines Problem. The first example illustrates that the algorithm
can discover the underlying features in complicated patterns and that the higher
layers can capture interesting higher order structure. The first dataset is a variant of
the lines problem proposed by Foldiak (1989) . The patterns in the dataset are com­
posed of horizontal and vertical lines as illustrated in figure 1. Note that, although

B

Figure 1: Dataset for the high order lines problem. (A) Patterns are generated by
selecting one of the pattern types according to the probabilities next to the arrows. Top
patterns are copied to the input. The horizontal and vertical lines on the left are selected
with probability 0.3. (B) Typical input patterns.

Bayesian Unsupervised Learning of Higher Order Structure 533

the datasets are displayed on a 2-D grid, the network makes no assumptions about
topography. Because the network is fully connected, all spatial arrangements of the
inputs are identical. The weights learned by the network are shown in figure 2.

I'~ 1.111:1 ~·I·II:I:l:I:I:II.I·~tl.II:~:I·I:1

__ -.... IIlImmll
1111111111

Figure 2: The weights in a 25-10-5 network after training. Blocks indicate the weights to
each unit. Square size is proportional to the weight values. Second layer units capture the
structure of the horizontal and vertical lines. Third layer units capture the correlations
among the lines. The first unit in the third layer is active when the 'II' is present. The
second, fourth, and fifth units have learned to represent the '+', '=', and '0' respectively,
with the remaining unit acting as a bias.

The Shifter Problem. The shifter problem (Hinton and Sejnowski, 1986), ex­
plained in figure 3, is important because the structure that must be discovered is in
the higher order input correlations. This example also illustrates the importance of
allowing high level states to influence low level states to determine the most proba­
ble internal representation. The units in the second layer can only capture second
order statistics and cannot determine the direction of the shift. The only way these
units can be disambiguated is to use the feedback from the units in the third layer
which detect the direction of the shift by integrating the output of the units in
the second layer. This allows the representation in the second layer to be "cleaned
up" and makes it easier to discover the higher order structure of the global shift.
The speed and reliability of the learning was tested by learning from random initial
conditions. The results are shown in figure 4. Note that the best solutions have a
cost of about one bit higher than the optimal cost of less than 9 bits, because top
units cannot capture the fact that they are mutually exclusive.

6 Discussion

The methods we have described work well on these simple benchmark problems
and scale well to larger problems such as the handwritten digits example used in
(Hinton et al., 1995). We believe there are two main reasons why the algorithm
described here runs considerably faster than other Gibbs sampling based methods.
The first is that there is no need to collect state statistics for each pattern. The
weight values are reestimated using just one sampled internal state per pattern. The
second is that weights that are not connected to informative units are not updated.
This prevents the model from learning what are effectively overly strong priors and
allows the weights in upper layers to adapt to structure actually in the data.

Gibbs sampling allows internal representations to be selected according to their true
posterior probability. This was shown to be effective in cases where the resulting

534 M. S. Lewicki and T. 1. Sejnowski

A B m··· _·
.
. . '

Figure 3: The shifter problem. (A) Input patterns are generated by generating a random
binary vector in the bottom row. This pattern is shifted either left or right (with wrap
around) with equal probability and copied to the top row. The input rows are duplicated
to add redundancy as in Dayan et al. (1995). (B) The weights of a 32-20-2 after learning.
The second layer of units learn to detect either local left shifts or right shifts in the data.
These units cannot determine the shift direction alone, however, and require feedback from
third layer units which integrate the outputs of all the units that represent a common shift
(note that there is no overlap in the weights for the two third-layer units) . This feedback
turns off units that are inconsistent with the direction of shift. The weights that are close
to zero for both third layer units effectively remove redundant second layer units that are
not required to represent the input patterns.

~w-----~------~----~-------.------.

~~-----I~O------~15------~ro~-----2~5----~~

Number of Epochs

Figure 4: The graph shows 10 runs on the shifter problem from random initial conditions.
The average bits per pattern is computed by -log(C)/(Nlog2). Each epoch used 200
input randomly generated input patterns. Two additional epochs were performed with
1000 random patterns to obtain accurate estimates of the average bits per pattern. The
network converges rapidly and reliably. The best solutions, like the one shown in figure 3b,
were found in 4/10 runs and had costs of approximately 10 bits at epoch 30. In this
example, the network can get caught in local minima if too many units learn to represent
the same local shifts.

Bayesian Unsupervised Learning of Higher Order Structure 535

representation has little ambiguity, i.e. each pattern has only a small number of
probable explanations. If the causal structure to be learned is inherently ambiguous,
e.g. in modeling the causal structure of medical symptoms, Gibbs sampling will be
slow and better performance can be obtained with wake-sleep learning (Hinton
et al., 1995; Frey et al., 1995) or mean field approximations (Saul et al., 1996).

There are many natural situations when there is ambiguity in low level features.
This ambiguity can only be resolved by integrating the contextual information which
itself is derived from the ambiguous simple features. This problem is common in
the case of noisy input patterns and in feature grouping problems such as figure­
ground separation. Feedback is crucial for ensuring that low-level representations
are consistent within the larger context.

Some systems, such as the Helmholtz machine (Dayan et al., 1995; Hinton et al.,
1995) , arrive at the internal state through a feedforward process. It possible that this
ambiguity in lower-level representations could be resolved by circuitry in the higher­
level representations, but if multiple higher-level modules make use of the same low­
level representations, the additional circuitry would have to be duplicated in each
module. It seems more parsimonious to use feedback to influence the formation of
the lower-level representations.

References

Dayan, P. , Hinton, G. E., Neal, R. M., and Zemel, R. S. (1995). The Helmholtz
machine. Neural Computation, 7:889-904.

F61dilik, P. (1989). Adaptive network for optimal linear feature extraction. In
Proceedings of the International Joint Conference on Neural Networks, volume I,
pages 401-405, Washington, D. C.

Frey, B. J., Hinton, G. E., and Dayan, P. (1995). Does the wake-sleep algorithm
produce good density estimators? In Touretzky, D. S., Mozer, M., and Hasselmo,
M., editors, Advances in Neural Information Processing Systems, volume 8, pages
661-667, San Mateo. Morgan Kaufmann.

Hinton, G. E., Dayan, P., Frey, B. J ., and Neal, R. M. (1995). The wake-sleep
algorithm for unsupervised neural networks. Science, 268(5214):1158-116l.

Hinton, G. E. and Sejnowski, T. J . (1986). Learning and relearning in Boltzmann
machines. In Rumelhart, D. E. and McClelland, J. L., editors, Parallel Distributed
Processing, volume 1, chapter 7, pages 282-317. MIT Press, Cambridge.

Lauritzen, S. L. and Spiegelhalter, D. J. (1988). Local computations with proba­
bilities on graphical structures and their application to expert systems. J. Royal
Statistical Soc. Series B Methodological, 50(2):157- 224.

Neal, R. M. (1992) . Connectionist learning of belief networks. Artificial Intelligence,
56(1):71-113.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann,
San Mateo.

Saul, L. K., Jaakkola, T ., and Jordan, M. I. (1996). Mean field theory for sigmoid
belief networks. J. Artificial Intelligence Research, 4:61-76.

