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Abstract 

The ability to rely on similarity metrics invariant to image transforma­
tions is an important issue for image classification tasks such as face or 
character recognition. We analyze an invariant metric that has performed 
well for the latter - the tangent distance - and study its limitations when 
applied to regular images, showing that the most significant among these 
(convergence to local minima) can be drastically reduced by computing 
the distance in a multiresolution setting. This leads to the multi resolution 
tangent distance, which exhibits significantly higher invariance to im­
age transformations, and can be easily combined with robust estimation 
procedures. 

1 Introduction 

Image classification algorithms often rely on distance metrics which are too sensitive to 
variations in the imaging environment or set up (e.g. the Euclidean and Hamming distances), 
or on metrics which, even though less sensitive to these variations, are application specific 
or too expensive from a computational point of view (e.g. deformable templates). 

A solution to this problem, combining invariance to image transformations with computa­
tional simplicity and general purpose applicability was introduced by Simard et al in [7]. 
The key idea is that, when subject to spatial transformations, images describe manifolds in a 
high dimensional space, and an invariant metric should measure the distance between those 
manifolds instead of the distance between other properties of (or features extracted from) 
the images themselves. Because these manifolds are complex, minimizing the distance be­
tween them is a difficult optimization problem which can, nevertheless, be made tractable 
by considering the minimization of the distance between the tangents to the manifolds -the 
tangent distance (TO) - instead of that between the manifolds themselves. While it has led 
to impressive results for the problem of character recognition [8] , the linear approximation 
inherent to the TO is too stringent for regular images, leading to invariance over only a very 
narrow range of transformations. 
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In this work we embed the distance computation in a multi resolution framework [3], 
leading to the multiresolution tangent distance (MRTD). Multiresolution decompositions 
are common in the vision literature and have been known to improve the performance of 
image registration algorithms by extending the range over which linear approximations 
hold [5, 1]. In particular, the MRTD has several appealing properties: 1) maintains 
the general purpose nature of the TD; 2) can be easily combined with robust estimation 
procedures, exhibiting invariance to moderate non-linear image variations (such as caused 
by slight variations in shape or occlusions); 3) is amenable to computationally efficient 
screening techniques where bad matches are discarded at low resolutions; and 4) can be 
combined with several types of classifiers. Face recognition experiments show that the 
MRTD exhibits a significantly extended invariance to image transformations, originating 
improvements in recognition accuracy as high as 38%, for the hardest problems considered. 

2 The tangent distance 

Consider the manifold described by all the possible linear transformations that a pattern 
lex) may be subject to 

Tp [lex)] = 1('ljJ(x, p)), (1) 

where x are the spatial coordinates over which the pattern is defined, p is the set of 
parameters which define the transformation, and 'ljJ is a function typically linear on p, but 
not necessarily linear on x. Given two patterns M(x) and N(x), the distance between the 
associated manifolds - manifold distance (MD) - is 

T(M, N) = min IITq[M(x)] - Tp[N(x)]W. (2) 
p,q 

For simplicity, we consider a version of the distance in which only one of the patterns is 
subject to a transformation, i.e. 

T(M, N) = min IIM(x) - Tp[N(x)]lf, (3) 
p 

but all results can be extended to the two-sided distance. Using the fact that 

\7pTp[N(x)] = \7pN('ljJ(x, p)) = \7p '¢(x, p)\7xN('¢(x, p)), (4) 

where \7pTp is the gradient of Tp with respect to p, Tp[N(x)] can, for small p, be 
approximated by a first order Taylor expansion around the identity transformation 

Tp[N(x)] = N(x) + (p - If\7p 'ljJ(x,p)\7x N(x). 

This is equivalent to approximating the manifold by a tangent hyper-plane, and leads to the 
TD. Substituting this expression in equation 3, setting the gradient with respect to p to zero, 
and solving for p leads to 

p ~ [~'VP;6(X' P ) 'Vx N(x) 'V); N(X)'V~;6(x, P)]-' ~ D(x)'Vp;6(x, P l'VxN(x) + I, 

(5) 
where D(x) = M(x) - N(x). Given this optimal p, the TD between the two patterns 

is computed using equations I and 3. The main limitation of this formulation is that it 
relies on a first-order Taylor series approximation, which is valid only over a small range 
of variation in the parameter vector p . 

2.1 Manifold distance via Newton's method 

The minimization of the MD of equation 3 can also be performed through Newton's method, 
which consists of the iteration 

pn+1 = pn _ 0: [\7~ T/p=pn] -I \7p Tlp=pn (6) 
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where \7p / and \7~ / are, respectively, the gradient and Hessian of the cost function of 
equation 3 with respect to the parameter p, 

\7p/ = 2 L [M(x) - Tp[N(x)]) V'pTp[N(x)] 
x 

V'~ / = 2 L [-V'pTp[N(x)] \7~Tp[N(x)] + [M(x) - N(x)] V'~Tp[N(x)]] . 
x 

Disregarding the term which contains second-order derivatives (V'~Tp[N(x)]), choosing 

pO = I and Q: = 1, using 4, and substituting in 6 leads to equation 5. I.e. the TO 
corresponds to a single iteration of the minimization of the MD by a simplified version of 
Newton's method, where sec!ond-orderderivatives are disregarded. This reduces the rate of 
convergence of Newton's method, and a single iteration may not be enough to achieve the 
local minimum, even for simple functions. It is, therefore, possible to achieve improvement 
if the iteration described by equation 6 is repeated until convergence. 

3 The multiresolution tangent distance 

The iterative minimization of equation 6 suffers from two major drawbacks [2]: 1) it may 
require a significant number of iterations for convergence and 2), it can easily get trapped 
in local minima. Both these limitations can be, at least partially, avoided by embedding 
the computation of the MD in a multiresolution framework, leading to the multiresolution 
manifold distance (MRMD). For its computation, the patterns to classify are first subject to 
a multiresolution decomposition, and the MD is then iteratively computed for each layer, 
using the estimate obtained from the layer above as a starting point, 

where, Dl(x) = M(x) - Tp~ [N(x)]. If only one iteration is allowed at each imageresolu­
tion, the MRMD becomes the multiresolution extension of the TO, i.e. the multi resolution 
tangent distance (MRTO). 

To illustrate the benefits of minimization over different scales consider the signal J (t) = 
E{;=1 sin(wkt ), and the manifold generated by all its possible translations J'(t,d) = 
J(t + d). Figure 1 depicts the multiresolution Gaussian decomposition of J(t), together 
with the Euclidean distance to the points on the manifold as a function of the translation 
associated with each of them (d). Notice that as the resolution increases, the distance 
function has more local minima, and the range of translations over which an initial guess 
is guaranteed to lead to convergence to the global minimum (at d = 0) is smaller. I.e., 
at higher resolutions, a better initial estimate is necessary to obtain the same performance 
from the minimization algorithm. 

Notice also that, since the function to minimize is very smooth at the lowest resolutions, 
the minimization will require few iterations at these resolutions if a procedure such as 
Newton's method is employed. Furthermore, since the minimum at one resolution is a good 
guess for the minimum at the next resolution, the computational effort required to reach 
that minimum will also be small. Finally, since a minimum at low resolutions is based on 
coarse, or global, information about the function or patterns to be classified, it is likely to 
be the global minimum of at least a significant region of the parameter space, if not the true 
global minimum. 
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Figure 1: Top: Three scales of the multiresolution decomposition of J(t) . Bottom: Euclidean 
distance VS. translation for each scale. Resolution decreases from left to right. 

4 Affine-invariant classification 

There are many linear transformations which can be used in equation 1. In this work, we 
consider manifolds generated by affine transformations 

[
X y 1000] 

1jJ(x,p) = 0 0 0 x yIP = ~(x)p, (8) 

where P is the vector of parameters which characterize the transformation. Taking the 
gradient of equation 8 with respect to p. V'p1jJ(x,p) = ~(x)T. using equation 4. and 
substituting in equation 7. 

p~+1 = pr + " [ ~ 4> (x) TV xN ' (x) viN' (x) 4> (xl ] -I 

L D'(x)~(x)TV'xN'(x), (9) 
x 

where N'(x) = N(1jJ (x, PI»' and D'(x) = M(x) - N'(x). For a given levell of the 
multiresolution decomposition, the iterative process of equation 9 can be summarized as 
follows. 

1. Compute N'(x) by warping the pattern to classify N(x) according to the best 
current estimate of p, and compute its spatial gradient V'xN'(x). 

2. Update the estimate of PI according to equation 9. 

3. Stop if convergence, otherwise go to 1. 

Once the final PI is obtained, it is passed to the multiresolution level below (by doubling the 
translation parameters), where it is used as initial estimate. Given the values of Pi which 
minimize the MD between a pattern to classify and a set of prototypes in the database, a 
K-nearest neighbor classifier is used to find the pattern's class. 

5 Robust classifiers 

One issue of importance for pattern recognition systems is that of robustness to outliers, i.e 
errors which occur with low probability, but which can have large magnitude. Examples 
are errors due to variation of facial features (e.g. faces shot with or without glasses) in 
face recognition, errors due to undesired blobs of ink or uneven line thickness in character 
recognition, or errors due to partial occlusions (such as a hand in front of a face) or partially 
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missing patterns (such as an undoted i). It is well known that a few (maybe even one) 
outliers of high leverage are sufficient to throw mean squared error estimators completely 
off-track [6] . 

Several robust estimators have been proposed in the statistics literature to avoid this problem. 
In this work we consider M-estimators [4] which can be very easily incorporated in the 
MD classification framework. M-estimators are an extension of least squares estimators 
where the square function is substituted by a functional p(x) which weighs large errors less 
heavily. The robust-estimator version of the tangent distance then becomes to minimize the 
cost function 

T(M, N) = min I: p(M(x) - Tp[N{x)]) , 
p x 

and it is straightforward to show that the "robust" equivalent to equation 9 is 

p~+' ~ pr +" [~P"[D(X))oI>(X)TI7XN'(X)I7;;:N'(X)oI>(X)T ]-' x 

(10) 

[~P'[D(X))oI>(X)Tl7xN' (X)] , (11) 

where D(x) = M(x) - N'(x) and p'(x) and p"(x) are, respectively, the first and second 
derivatives of the function p( x) with respect to its argument. 

6 Experimental results 

In this section, we report on experiments carried out to evaluate the performance of the MD 
classifier. The first set of experiments was designed to test the invariance of the TD to affine 
transformations of the input. The second set was designed to evaluate the improvement 
obtained under the multiresolution framework. 

6.1 Affine invariance of the tangent distance 

Starting from a single view of a reference face, we created an artificial dataset composed 
by 441 affine transformations of it. These transformations consisted of combinations of 
all rotations in the range from - 30 to 30 degrees with increments of 3 degrees, with all 
scaling transformations in the range from 70% to 130% with increments of 3%. The faces 
associated with the extremes of the scaling/rotation space are represented on the left portion 
of figure 2. 

On the right of figure 2 are the distance surfaces obtained by measuring the distance 
associated with several metrics at each of the points in the scaling/rotation space. Five 
metrics were considered in this experiment: the Euclidean distance (ED), the TD, the MD 
computed through Newton's method, the MRMD, and the MRTD. 

While the TD exhibits some invariance to rotation and scaling, this invariance is restricted 
to a small range of the parameter space and performance only slightly better than the 
obtained with the ED. The performance of the MD computed through Newton's method 
is dramatically superior, but still inferior to those achieved with the MRTD (which is very 
close to zero over the entire parameter space considered in this experiment), and the MRMD. 
The performance of the MRTD is in fact impressive given that it involves a computational 
increase of less than 50% with respect to the TD, while each iteration of Newton's method 
requires an increase of 100%, and several iterations are typically necessary to attain the 
minimum MD. 
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Figure 2: Invariance of the tangent distance. In the right, the surfaces shown correspond to ED, TO, 
MO through Newton's method, MRTO, and MRMO. This ordering corresponds to that of the nesting 
of the surfaces, i.e. the ED is the cup-shaped surface in the center, while the MRMO is the flat surface 
which is approximately zero everywhere. 

6.2 Face recognition 

To evaluate the performance of the multiresolution tangent distance on a real classification 
task, we conducted a series of face recognition experiments, using the Olivetti Research 
Laboratories (ORL) face database. This database is composed by 400 images of 40 subjects, 
10 images per subject, and contains variations in pose, light conditions, expressions and 
facial features, but small variability in terms of scaling, rotation, or translation. To correct 
this limitation we created three artificial datasets by applying to each image three random 
affine transformations drawn from three multivariate normal distributions centered on the 
identity transformation with different covariances. A small sample of the faces in the 
database is presented in figure 3, together with its transformed version under the set of 
transformations of higher variability. 

Figure 3: Left: sample of the ORL face database. Right: transformed version. 

We next designed three experiments with increasing degree of difficulty. In the first, we 
selected the first view of each subject as the test set, using the remaining nine views as 
training data. In the second, the first five faces were used as test data while the remaining 
five were used for training. Finally, in the third experiment, we reverted the roles of the 
datasets used in the first. The recognition accuracy for each of these experiments and each 
of the datasets is reported on figure 4 for the ED, the TO, the MRTD, and a robust version 
of this distance (RMRTO) with p(x) = 1x2 if x::; aT and p(x) = ~2 otherwise, where T 
is a threshold (set to 2.0 in our experiments), and a a robust version of the error standard 
deviation defined as a = median le i - median (ei )1 /0.6745. 

Several conclusions can be taken from this figure. First, it can be seen that the MRTD 
provides a significantly higher invariance to linear transformations than the ED or the TO, 
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increasing the recognition accuracy by as much as 37.8% in the hardest datasets. In fact, 
for the easier tasks of experiments one and two, the performance of the multiresolution 
classifier is almost constant and always above the level of 90% accuracy. It is only for the 
harder experiment that the invariance of the MRTO classifier starts to break down. But even 
in this case, the degradation is graceful- the recognition accuracy only drops below 75% 
for considerable values of rotation and scaling (dataset D3). 

On the other hand, the ED and the single resolution TO break down even for the easier 
tasks, and fail dramatically when the hardest task is performed on the more difficult datasets. 
Furthermore, their performance does not degrade gracefully, they seem to be more invariant 
when the training set has five views than when it is composed by nine faces of each subject 
in the database. 
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Figure 4: Recognition accuracy. From left to right: results from the first, second, and third 
experiments. Oatasets are ordered by degree of variability: 00 is the ORL database 03 is subject to 
the affine transfonnations of greater amplitude. 
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