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Abstract 

We present a method for determining the globally optimal on-line 
learning rule for a soft committee machine under a statistical me­
chanics framework. This work complements previous results on 
locally optimal rules, where only the rate of change in general­
ization error was considered. We maximize the total reduction in 
generalization error over the whole learning process and show how 
the resulting rule can significantly outperform the locally optimal 
rule. 

1 Introduction 

We consider a learning scenario in which a feed-forward neural network model (the 
student) emulates an unknown mapping (the teacher), given a set of training exam­
ples produced by the teacher. The performance of the student network is typically 
measured by its generalization error, which is the expected error on an unseen ex­
ample. The aim of training is to reduce the generalization error by adapting the 
student network's parameters appropriately. 

A common form of training is on-line learning, where training patterns are pre­
sented sequentially and independently to the network at each learning step. This 
form of training can be beneficial in terms of both storage and computation time, 
especially for large systems. A frequently used on-line training method for networks 
with continuous nodes is that of stochastic gradient descent, since a differentiable 
error measure can be defined in this case. The stochasticity is a consequence of 
the training error being determined according to only the latest, randomly cho­
sen, training example. This is to be contrasted with batch learning, where all the 
training examples would be used to determine the training error leading to a de­
terministic algorithm. Finding an effective algorithm for discrete networks is less 
straightforward as the error measure is not differentiable. 
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Often, it is possible to improve on the basic stochastic gradient descent algorithm 
and a number of modifications have been suggested in the literature. At late times 
one can use on-line estimates of second order information (the Hessian or its eigen­
values) to ensure asymptotically optimal performance (e.g., [1, 2]). A number of 
heuristics also exist which attempt to improve performance during the transient 
phase of learning (for a review, see [3]). However, these heuristics all require the 
careful setting of parameters which can be critical to their performance. Moreover, 
it would be desirable to have principled and theoretically well motivated algorithms 
which do not rely on heuristic arguments. 

Statistical mechanics allows a compact description for a number of on-line learning 
scenarios in the limit of large input dimension, which we have recently employed to 
propose a method for determining globally optimal learning rates for on-line gradi­
ent descent [4]. This method will be generalized here to determine globally optimal 
on-line learning rules for both discrete and continuous machines. That is, rules 
which provide the maximum reduction in generalization error over the whole learn­
ing process. This provides a natural extension to work on locally optimal learning 
rules [5, 6], where only the rate of change in generalization error is optimized. In 
fact, for simple systems we sometimes find that the locally optimal rule is also glob­
ally optimal. However, global optimization seems to be rather important in more 
complex systems which are characterized by more degrees of freedom and often re­
quire broken permutation symmetries to learn perfectly. We will outline our general 
formalism and consider two simple and tractable learning scenarios to demonstrate 
the method. 

It should be pointed out that the optimal rules derived here will often require knowl­
edge of macroscopic properties related to the teacher's structure which would not 
be known in general. In this sense these rules do not provide practical algorithms as 
they stand, although some of the required macroscopic properties may be evaluated 
or estimated on the basis of data gathered as the learning progresses. In any case 
these rules provide an upper bound on the performance one could expect from a 
real algorithm and may be instrumental in designing practical training algorithms. 

2 The statistical mechanics framework 

For calculating the optimal on-line learning rule we employ the statistical mechanics 
description of the learning process. Under this framework, which may be employed 
for both smooth [7,8] and discrete sy.stems (e.g. [9]), the learning process is captured 
by a small number of self-averaging statistics whose trajectory is deterministic in the 
limit of large input dimension. In this analysis the relevant statistics are overlaps 
between weight vectors associated with different nodes of the student and teacher 
networks. The equations of motion for the evolution of these overlaps can be written 
in closed form and can be integrated numerically to describe the dynamics. 

We will consider a general two-layer soft committee machinel . The desired teacher 
mapping is from an N-dimensional input space e E RN onto a scalar ( E R, 
which the student models through a map a(J,e) = 2:~l g(Ji ·e), where g(x) is the 
activation function for the hidden layer, J == {Jih<i<K is the set of input-to-hidden 
adaptive weights for the K hidden nodes and the hidden-to-output weights are set 
to 1. The activation of hidden node i under presentation of the input pattern eJ' is 
denoted xr = J i . eJ'· 

IThe general result presented here also applies to the discrete committee machine, but 
we will limit our discussion to the soft-committee machine. 
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Training examples are of the form (el', (I') where J.L = 1,2, ... , P. The components 
of the independently drawn input vectors el' are uncorrelated random variables 
with zero mean and unit variance. The corresponding output (I' is given by a de­
terministic teacher of a similar configuration to the student except for a possible 
difference in the number M of hidden units and is of the form (I' = l:!1 g(Bn . el'), 
where B == {Bnh<n<M is the set of input-to-hidden adaptive weights. The acti­
vation of hidden node n under presentation of the input pattern el' is denoted 
Y~ = Bn . el'. We will use indices i, j, k, I ... to refer to units in the student net­
work and n, m, ... for units in the teacher network. We will use the commonly used 
quadratic deviation E(J,e) == ~ [ a(J,e) - (]2, as the measure of disagreement be­
tween teacher and student. The most basic learning rule is to perform gradient 
descent on this quantity. Performance on a typical input defines the generalization 
error Eg(J) == (E(J,e»{(} through an average over all possible input vectors e. 
The general form of learning rule we will consider is, 

J~+l = J~ + ~FfJ(xl' ~I') el' , 'N' ,." ~ (1) 

where F == {Fi} depends only on the student activations and the teacher's output, 
and not on the teacher activations which are unobservable. Note that gradient 
descent on the error takes this general form, as does Hebbian learning and other 
training algorithms commonly used in discrete machines. The optimal F can also 
depend on the self-averaging statistics which describe the dynamics, since we know 
how they evolve in time. Some of these would not be available in a practical appli­
cation, although for some simple cases the unobservable statistics can be deduced 
from observable quantities. This is therefore an idealization rather than a practical 
algorithm and provides a bound on the performance of a real algorithm. 

The activations are distributed according to a multivariate Gaussian with covari­
ances: (XiXk) = Ji·Jk == Qik, (XiYn) = Ji·Bn == R in , and (YnYm) = Bn·Bm == Tnm, 
measuring overlaps between student and teacher vectors. Angled brackets denote 
averages over input patterns. The covariance matrix completely describes the state 
of the system and in the limit of large N we can write equations of motion for each 
macroscopic (the Tnm are fixed and define the teacher): 

dRin ( ) dQik ( 
dO! = FiYn do: = Fixk + FkXi + FiFk) , (2) 

where angled brackets now denote the averages over activations, replacing the av­
erages over inputs, and 0: = J.LIN plays the role of a continuous time variable. 

3 The globally optimal rule 

Carrying out the averaging over input patterns one obtains an expression for the 
generalization error which depends exclusively on the overlaps R,Q and T. Using 
the dependence of their dynamics (Eq. 2) on F one can easily calculate the locally 
optimal learning rule [5] by taking the functional derivative of dEg(F)/do: to zero, 
looking for the rule that will maximize the reduction in generalization error at the 
present time step. This approach has been shown to be successful in some training 
scenarios but is likely to fail where the learning process is characterized by several 
phases of a different natures (e.g., multilayer networks). 

The globally optimal learning rule is found by minimizing the total change in gen­
eralization error over a fixed time window, 

lal dE lal 

~fg(F)= dgdo: = £(F, 0:) do:. 
ao 0: ao 

(3) 
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This is a functional of the learning rule which we minimize by a variational approach. 

First we can rewrite the integrand by expanding in terms of the equations of motion, 
each constrained by a Lagrange multiplier, 

£(F ) = ~ 8fg dRin ~ 8fg dQik ~..\ . (d~n _ (F.- ») 
,a ~ 8R. da + ~ 8Q. da + ~ In d IYn 

in In ik Ik in a 

+ L Vik (d~ik - (FiXk + FkXi + FiFk») . 
ik a 

(4) 

The expression for £ still involve two multidimensional integrations over x and y, 
so taking variations in F, which may depend on x and ( but not on y, we find an 
expression for the optimal rule in terms of the Lagrange multipliers: 

1 -1 _ 
F = -x -"2v .\y (5) 

where v = [Vij] and .\ = [..\in]. We define y to be the teacher's expected field given 
the teacher's output and the student activations, which are observable quantities: 

y = / dyyp(ylx,() . (6) 

Now taking variations in the overlaps w.r.t. the integral in Eq. (3) we find a set of 
differential equations for the Lagrange multipliers1 

d..\km _ L,,\ . 8{FiYn) _ LV .. 8{FiXj + FjXi + FiFj) 
da - . In 8Rkm .. I} 8Rkm 

In IJ 

(7) 

where F takes its optimal value defined in Eq. (5). The boundary conditions for 
the Lagrange multipliers are, 

and (8) 

which are found by minimizing the rate of change in generalization error at ai, so 
that the globally optimal solution reduces to the locally optimal solution at this 
point, reflecting the fact that changes at al have no affect at other times. 

IT the above expressions do not yield an explicit formula for the optimal rule then 
the rule can be determined iteratively by gradient descent on the functional Llfg(F). 
To determine all the quantities necessary for this procedure requires that we first 
integrate the equations for the overlaps forward and then integrate the equations 
for the Lagrange multipliers backwards from the boundary conditions in Eq. (8). 

4 Two tractable examples 

In order to apply the above results we must be able to carry out the average in 
Eq. (6) and then in Eq. (7). These averages are also required to determine the 
locally optimal learning rule, so that the present method can be extended to any 
of the problems which have already been considered under the criteria of local 
optimality. Here we present two examples where the averages can be computed 
in closed form. The first problem we consider is a boolean perceptron learning a 
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linearly separable task where we retrieve the locally optimal rule [5]. The second 
problem is an over-realizable task, where a soft committee machine student learns 
a perceptron with a sigmoidal response. In this example the globally optimal rule 
significantly outperforms the locally optimal rule and exhibits a faster asymptotic 
decay. 

Boolean perceptron: For the boolean perceptron we choose the activation func­
tion g(x) = sgn(x) and both teacher and student have a single hidden node 
(M = K = 1). The locally optimal rule was determined by Kinouchi and Caticha [5] 
and they supply the expected teacher field given the teacher output ( = sgn(y) and 
the student field x (we take the teacher length T = 1 without loss of generality), 

_ R ( (~exp(-if-») y = - x + ---'-----,,..-----:-
Q ,erfc (-5?) 

(9) 

Substituting this expression into the Lagrange multiplier dynamics in Eq. (7) shows 
that the ratio of .x to v is given by .x/v = -2Q / R, and Eq. (5) then returns the 
locally optimal value for the optimal rule: 

( fi.. exp( _,2z 2 ) 

F = V i 2. (10) 
,erfc (-~,) 

This rule leads to modulated Hebbian learning and the resulting dynamics are 
discussed in [5]. We also find that the locally optimal rule is retrieved when the 
teacher is corrupted by output or weight noise [9]. 

Soft committee machine learning a continuous perceptron: In this example 
the teacher is an invertible perceptron (M = 1) while the student is a soft committee 
machine with an arbitrary number (K) of hidden nodes. We choose the activation 
function g(x) = erf(x/v'2) for both the student and teacher since this allows the 
generalization error to be determined in closed form [7]. This is an example of 
an over-realizable task, since the student has greater complexity than is required 
to learn the teacher's mapping. The locally optimal rule for this scenario was 
determined recently [6]. 

Since the teacher is invertible, the expected teacher activation fi is trivially equal 
to the true activation y. This leads to a particularly simple form for the dynamics 
(the n suffix is dropped since there is only one teacher node), 

dRi dQik 
do: = biT - Ri do: = bibkT - Qik , (11) 

where we have defined bi = - Ej vi/ .xj /2 and the optimal rule is given by 
Fi = biy - Xi. The Lagrange multiplier dynamics in Eq. (7) then show that the 
relative ratios of each Lagrange multiplier remain fixed over time, so that bi is de­
termined by its boundary value (see Eq. (8». It is straightforward to find solutions 
for long times, since the bi approach limiting values for very small generalization 
error (there are a number of possible solutions because of symmetries in the problem 
but any such solution will have the same performance for long times). For example, 
one possible solution is to have b1 = 1 and bi = 0 for all i f:. 1, which leads to an 
exponential decay of weights associated with all but a single node. This shows how 
the optimal performance is achieved when the complexity of the student matches 
that of the teacher. 

Figure 1 shows results for a three node student learning a continuous perceptron. 
Clearly, the locally optimal rule performs poorly in comparison to the globally 
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Figure 1: A three node soft committee machine student learns from an continu­
ous percept ron teacher. The figure on the left shows a log plot of the generaliza­
tion error for the globally optimal (solid line) and locally optimal (dashed line) 
algorithms. The figure on the right shows the student-teacher overlaps for the 
locally optimal rule, which exhibit a symmetric plateau before specialization oc­
curs. The overlaps where initialized randomly and uniformly with Qii E [0,0.5] and 
~,Qi*j E [0,10-6]. 

optimal rule. In this example the globally optimal r.ule arrived at was one in which 
two nodes became correlated with the teacher while a third became anti-correlated, 
showing another possible variation on the optimal rule (we determined this rule 
iteratively by gradient descent in order to justify our general approach, although 
the observations above show how one can predict the final result for long times). 
The locally optimal rule gets caught in a symmetric plateau, characterized by a lack 
of differentiation between student vectors associated with different nodes, and also 
displays a slower asymptotic decay. 

5 Conclusion and future work 

We have presented a method for determining the optimal on-line learning rule for 
a soft committee machine under a statistical mechanics framework. This result 
complements previous work on locally optimal rules which sought only to optimize 
the rate of change in generalization error. In this work we considered the global 
optimization problem of minimizing the total change in generalization error over 
the whole learning process. We gave two simple examples for which the rule could 
be determined in closed form, for one of which, an over-realizable learning scenario, 
it was shown how the locally optimal rule performed poorly in comparison to the 
globally optimal rule. It is expected that more involved systems will show even 
greater difference in performance between local and global optimization and we 
are currently applying the method to more general teacher mappings. The main 
technical difficulty is in computing the expected teacher activation in Eq. (6) and 
this may require the use of approximate methods in some cases. 

It would be interesting to compare the training dynamics obtained by the globally 
optimal rules to other approaches, heuristic and principled, aimed at incorporating 
information about the curvature of the error surface into the parameter modification 
rule. In particular we would like to examine rules which are known to be optimal 
asymptotically (e.g. [10]). Another important issue is whether one can apply these 
results to facilitate the design of a practical learning algorithm. 
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