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Abstract 

This paper applies the Mixture of Gaussians probabilistic model, com­
bined with Expectation Maximization optimization to the task of sum­
marizing three dimensional range data for a mobile robot. This provides 
a flexible way of dealing with uncertainties in sensor information, and al­
lows the introduction of prior knowledge into low-level perception mod­
ules. Problems with the basic approach were solved in several ways: the 
mixture of Gaussians was reparameterized to reflect the types of objects 
expected in the scene, and priors on model parameters were included 
in the optimization process. Both approaches force the optimization to 
find 'interesting' objects, given the sensor and object characteristics. A 
higher level classifier was used to interpret the results provided by the 
model, and to reject spurious solutions. 

1 Introduction 

This paper concerns an application of the Mixture of Gaussians (MoG) probabilistic model 
(Titterington et aI., 1985) for a robot docking application. We use the Expectation­
Maximization (EM) approach (Dempster et aI., 1977) to fit Gaussian sub-models to a sparse 
3d representation of the robot's environment, finding walls, boxes, etc .. We have modified 
the MoG formulation in three ways to incorporate prior knowledge about the task, and the 
sensor characteristics: the parameters of the Gaussians are recast to constrain how they fit 
the data, priors on these parameters are calculated and incorporated into the EM algorithm, 
and a higher level processing stage is included which interprets the fit of the Gaussians on 
the data, detects misclassifications, and providing prior information to guide the model­
fitting. 

The robot is equipped with a LIDAR 3d laser range-finder (PIAP, 1995) which it uses to 
identify possible docking objects. The range-finder calculates the time of flight for a light 
pulse reflected off objects in the scene. The particular LIDAR used is not very powerful, 
making objects with poor reflectance (e.g., dark, shiny, or surfaces not perpendicular to the 
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laser beam) invisible. The scan pattern is also very sparse, especially in the vertical direc­
tion, as shown in the scan of a wall in Figure 1. However, if an object is detected, the range 
returned is accurate (±1-2cm). When the range data is plotted in Cartesian space it forms 
a number of sparse clusters, leading naturally to the use of MoG clustering algorithms to 
make sense of the scene. While the Gaussian assumption is not an ideal model of the data, 
the generality of MoG, and its ease of implementation and analysis motivated its use over a 
more specialized approach. The sparse nature of the data inspired the modifications to the 
MoG formulation described in this paper. 

Model-based object recognition from dense range images has been widely reported (see 
(Arman and Aggarwal, 1993) for a review), but is not relevant in this case given the sparse­
ness of the data. Denser range images could be collected by combining multiple scans, but 
the poor visibility of the sensor hampers the application of these techniques. The advantage 
of the MoG technique is that the segmentation is "soft", and perception proceeds iteratively 
during learning. This is especially useful for mobile robots where evidence accumulates 
over time, and the allocation of attention is time and state-dependent. The EM algorithm is 
useful since it is guaranteed to converge to a local maximum. 

The following sections of the paper describe the re-parameterization of the Gaussians to 
model plane-like clusters, the formulation of the priors, and the higher level processing 
which interprets the clustered data in order to both move the robot and provide prior infor­
mation to the model-fitting algorithm. 
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Figure 1: Plot showing data from a LIDAR scan of a wall, plotted in Cartesian space. The 
robot is located at the origin, with the y axis pointing forward, x to the right, and z up. The 
sparse scan pattern is visible, as well as the visibility constraint: the wall extends beyond 
where the scan ends, but is invisible to the LIDAR due to the orientation of the wall 

2 Mixture of Gaussians model 

The range-finder returns a set of data, each of which is a position in Cartesian space Xi = 
(Xi, Yi, Zi). The complete set of data D = {Xl ... XN} is modeled as being generated by a 
mixture density 

M 

P(xn) = L P(xn Ii, JLi, E i , 1l'i)P( i), 
i=l 

where we use a Gaussian as the sub-model, with mean JLi, variance Ei and weight 1l'i' which 
makes the probability of a particular data point: 

M 

P(xnIJL, E, 1l') = ~ (21l')3/:jEi I1/2 exp ( -~(Xn - JLi)TE;l(xn - JLi)) 
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Given a set of data D, the most likely set of parameters is found using the EM algorithm. 
This algorithm has a number of advantages, such as guaranteed convergence to a local 
minimum, and efficient computational performance. 

In 3D Cartesian space, the Gaussian sub-models form ellipsoids, where the size and orien­
tation are determined by the covariance matrix ~~. In the general case, the EM algorithm 
can be used to learn all the parameters of ~i. The sparseness of the LIDAR data makes 
this parameterization inappropriate, as various odd collections of points could be clustered 
together. By changing the parameterization of ~~ to better model plane-like structures, the 
system can be improved. The reparameterization is most readily expressed in terms of the 
eigenvalues Ai and eigenvectors ~ of the covariance matrix ~i = ~Ai ~ -I. 

The covariance matrix of a normal approximation to a plane-like vertical structure will 
have a large eigenvalue in the z direction, and in the x-y plane one large and one small 
eigenvalue. Since ~i is symmetrical, the eigenvectors are orthogonal, v:- I = ~T = ~, 
and ~i can be written: 

o 

where Oi is the angle of orientation of the ith sub-model in the x-y plane, ai scales the 
cluster in the x and y directions, and bi scales in the z direction. The constant, controls 
the aspect ratio of the ellipsoid in the x-y plane. I 

The optimal values of these parameters (a, b) are found using EM, first calculating the 
probability that data point Xn is modeled by Gaussian i, (htn ) for every data point Xn and 
every Gaussian i, 

7ril~il-1/2 exp (-~(Xn - fli)T~il(Xn - fli)) 
hin = --~M~--------~~~--------~--------~--

Li==1 7ril~~I - 1/2exp (-~(Xn - fldT~il(Xn - fli))' 

This "responsibility" is then used as a weighting for the updates to the other parameters, 

fli 
Ln hinxn {) _ ~ t -I ( 2 Ln htn(Xnl - flil)(Xn 2 - fli2) ) 
Ln htn ' t - 2 an Ln htn[(Xnl - fl~I)2 - (Xn2 - fli2)2] 

(r - l)((xnl - flid sin 0 + (Xn2 - fl~2) COSO)2 + (Xnl - flid 2 + (Xn2 - fli2)2 

Ln hin( b _ Ln hin (Xn3 - fln3)2 
2, Ln hin ' t - Ln htn ' 

where Xnl is the first element of Xn etc. and ( corresponds to the projection of the data into 
the plane ofthe cluster. It is im~ortant to update the means fli first, and use the new values 
to update the other parameters. Figure 2 shows a typical model response on real LIDAR 
data. 

2.1 Practicalities of application, and results 

Starting values for the model parameters are important, as EM is only guaranteed to find a 
local optimum. The Gaussian mixture components are initialized with a large covariance, 
allowing them to pick up data and move to the correct positions. We found that initializing 
the means fli to random data points, rather than randomly in the input space, tended to 

1 By experimentation, a value of'Y of 0.01 was found to be reasonable for this application. 
2Intuition for the Oi update can be obtained by considering that (Xnl - fltl) is the x component of 

the distance between Xn and /.Li, which is IXn - /.Ld cos e, and similarly (Xn2 - /.Li2) is IXn - /.Li I sin e, 
so tan 2() = sin 20 = 2 sin 0 cos 0 = 2(xn1 -1'.1 )(xn 2 -1'.2) . 

cos 20 cos2 0-sin2 0 (X n 1-l'i1 )2 -(Xn2 -1'.2)2 
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Figure 2: Example of clustering of the 3d data points. The left hand graph shows the view 
from above (the x-y plane), and the right graph shows the view from the side (the y-z 
plane), with the robot positioned at the origin. The scene shows a box at an oblique angle, 
with a wall behind. The extent of the plane-like Gaussian sub-models is illustrated using 
the ellipses, which are drawn at a probability of 0.5. 

work better, especially given the sensor characteristics-if the LIDAR returned a range 
measurement, it was likely to be part of an interesting object. 

Despite the accuracy of measurement, there are still outlying data points, and it is impos­
sible to fully segment the data into separate objects. One simple solution we found was 
to define a "junk" Gaussian. This is a sub-model placed in the center of the data, with a 
large covariance ~. This Gaussian then becomes responsible for the outliers in the data (i.e. 
sparsely distributed data over the whole scene, none of which are associated with a specific 
object), allowing the object-modeling Gaussians to work undistracted. 

The use of EM with the a, b, e parameterization found and represented plane-like data clus­
ters better than models where all the elements of the covariance matrix were free to adapt. 
It also tended to converge faster, probably due to the reduced numbers of parameters in the 
covariance matrix (3 as opposed to 6). Although the algorithm is constrained to find planes, 
the parameterization was flexible enough to model other objects such as thin vertical lines 
(say from a table leg). The only problem with the algorithm was that it occasionally found 
poor local minimum solutions, such as illustrated in Figure 3. This is a common problem 
with least squares based clustering methods (Duda and Hart, 1973) . 
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Figure 3: Two examples of 'undesirable' local minimum solutions found by EM. Both 
graphs show the top view of a scene of a box in front of a wall. The algorithm has incor­
rectly clustered the box with the left hand side of the wall. 
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3 Incorporating prior information 

As well as reformulating the Gaussian models to suit our application, we also incorporated 
prior knowledge on the parameters of the sub-models. Sensor characteristics are often 
well-defined, and it makes sense to use these as early as possible in perception, rather than 
dealing with their side-effects at higher levels of reasoning. Here, e.g., the visibility con­
straint, by which only planes which are almost perpendicular to the lidar rays are visible, 

could be included by writing P(xn) = I:~~l P(xnli, f3t)P(i)P(visiblelf3i), the updates 
could be recalculated, and the feature immediately brought into the modeling process. In 
addition, prior knowledge about the locations and sizes of objects, maybe from other sen­
sors, can be used to influence the modeling procedure. This allows the sensor to make 
better use of the sparse data. 

For a model with parameters f3 and data D, Bayes rule gives: 

P(f3) II 
P(,8ID) = P(D) P(xnlf3)· 

Normally the logarithm of this is taken, to give the log-likelihood, which in the case of 
mixtures of Gaussians is 

L(DIf3) = log(p({/-li, 7ri,ai,bi ,6Q)) -log(p(D)) + LlogLp(xnli,/-li,7ri,ai,bi,Oi) 
n 

To include the parameter priors in the EM algorithm, distributions for the different pa­
rameters are chosen, then the log-likelihood is differentiated as usual to find the up­
dates to the parameters (McMichael, 1995). The calculations are simplified if the 
priors on all the parameters are assumed to be independent, p( {/-li, 7rt , ai, bt , Od) = 
It p(/-ldp( 7ri)P( ai)p(bdp( Od· 

The exact form of the prior distributions varies for different parameters, both to cap­
ture different behavior and for ease of implementation. For the element means (/-li), 
a flat distribution over the data is used, specifying that the means should be among 
the data points. For the element weights, a multinomial Dirichlet prior can be used, 

p(7ri la) = n::~1J n~l 7rf. When the hyperparameter a > 0, the algorithm favours 

weights around 1/ NI, and when -1 < a < 0, weights close to 0 or 1.3 The expected 
value of ai (written as ai) can be encoded using a truncated inverse exponential prior 
(McMichael, 1995), setting p(ailai) = Kexp(-at/(2ai)), where K is a normalizing 
factor. 4 The prior for bi has the same form. Priors for Ot were not used, but could be useful 
to capture the visibility constraint. Given these distributions, the updates to the parameters 
become 

/-li 
I:n hin + a 

I:n I:j h jn + a 
2 -

o'i I:n hin(/, + a; bt = I:n hin (Xn3 - /-ln3) + bt . 
2 I:n hin I:n hin 

The update for /-li is the same as before, the prior having no effect. The update for at and 
bt forces them to be near ai and bi , and the update for 7ri is affected by the hyperparameter 
a. 

The priors on ai and bi had noticeable effects on the models obtained. Figure 4 shows the 
results from two fits, starting from identical initial conditions. By adjusting the size of the 
prior, the algorithm can be guided into finding different sized clusters. Large values of the 
prior are shown here to demonstrate its effect. 

3In this paper we make little use of the Q priors, but introducing separate Q;'S for each object 
could be a useful next step for scenes with varying object sizes. 

4To deal with the case when a, = 0, the prior is truncated, setting p(a;!a,) = 0 when a, < Perit . 
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Figure 4: Example of the action of the priors on ai and bi . The photograph shows a 
visual image of the scene: a box in front of a wall, and the priors were chosen to prefer a 
distribution matching the wall. The two left hand graphs show the top and side view of the 
scene clustered without priors, while the two right hand graphs use priors on ai and bi . The 
priors give a preference for large values of ai and bi , so biasing the optimization to find a 
mixture component matching the whole wall as opposed to just the top of it. 

4 Classification and diagnosis 

FEATURES 

SENSOR MODEL FITIING HIGHER LEVEL MOVE COMMAND 

DATA EM ALGORITHM PRIOR PROCESSING FOR ROBOT 

INFORMATION 

Figure 5: Schematic of system 

This section describes how higher-level processing can be used to not only interpret the 
clusters fitted by the EM algorithm, but also affect the model-fitting using prior information. 
The processes of model-fitting and analysis are thus coupled, and not sequential. 

The results of the model fitting are primarily processed to steer the robot. Once the cluster 
has been recognized as a boxlwaIVetc., the location and orientation are used to calculate 
a move command. To perform the object-recognition, we used a simple classifier on a 
feature vector extracted from the clustered data. The labels used were specific to docking, 
and commonly clustered objects - boxes, walls, thin vertical lines. but also included labels 
for clustering errors (like those shown in Figure 3). The features used were the values of the 
parameters ai, bi , giving the size of the clusters, but also measures of the visibility of the 
clusters, and the skewness of the within-cluster data. The classification used simple models 
of the probability distributions of the features fi' given the objects OJ (i.e. P(hIOj)), 
using a set of training data. In addition to moving the robot, the classifier can modify the 
behavior of the model fitting algorithm. If a poor clustering solution is found, EM can be 
re-run with slightly different initial conditions. If the probable locations or sizes of objects 
are known from previous scans, or indeed from other sensors, then these can constrain the 
clustering through priors, or provide initial means. 
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5 Summary 

This paper shows that the Mixture of Gaussians architecture combined with EM optimiza­
tion and the use of parameter priors can be used to segment and analyze real data from the 
3D range-finder of a mobile robot. The approach was successfully used to guide a mobile 
robot towards a docking object, using only its range-finder for perception. 

For the learning community this provides more than an example of the application of a 
probabilistic model to a real task. We have shown how the usual Mixture of Gaussians 
model can be parameterized to include expectations about the environment in a way which 
can be readily extended. We have included prior knowledge at three different levels: 1. 
The use of problem-specific parameterization of the covariance matrix to find expected 
patterns (e.g. planes at particular angles). 2. The use of problem-specific parameter priors 
to automatically rule-out unlikely objects at the lowest level of perception. 3. The results of 
the clustering process were post-processed by higher-level classification algorithms which 
interpreted the parameters of the mixture components, diagnosed typical misclassification, 
provided new priors for future perception, and gave the robot control system new targets. 

It is expected that the basic approach can be fruitfully applied to other sensors, to prob­
lems which track dynamically changing scenes, or to problems which require relationships 
between objects in the scene to be accounted for and interpreted. A problem common 
to all modeling approaches is that it is not trivial to determine the number and types of 
clusters needed to represent a given scene. Recent work with Markov-Chain Monte-Carlo 
approaches has been successfully applied to mixtures of Gaussians (Richardson and Green, 
1997), allowing a Bayesian solution to this problem, which could provide control systems 
with even richer probabilistic information (a series of models conditioned on number of 
clusters). 
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