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Abstract 

People can understand complex auditory and visual information, often 
using one to disambiguate the other. Automated analysis, even at a low­
level, faces severe challenges, including the lack of accurate statistical 
models for the signals, and their high-dimensionality and varied sam­
pling rates. Previous approaches [6] assumed simple parametric models 
for the joint distribution which, while tractable, cannot capture the com­
plex signal relationships. We learn the joint distribution of the visual and 
auditory signals using a non-parametric approach. First, we project the 
data into a maximally informative, low-dimensional subspace, suitable 
for density estimation. We then model the complicated stochastic rela­
tionships between the signals using a nonparametric density estimator. 
These learned densities allow processing across signal modalities. We 
demonstrate, on synthetic and real signals, localization in video of the 
face that is speaking in audio, and, conversely, audio enhancement of a 
particular speaker selected from the video. 

1 Introduction 

Multi-media signals pervade our environment. Humans face complex perception tasks in 
which ambiguous auditory and visual information must be combined in order to support 
accurate perception. By contrast, automated approaches for processing multi-media data 
sources lag far behind. Multi-media analysis (sometimes called sensor fusion) is often 
formulated in a maximum a posteriori (MAP) or maximum likelihood (ML) estimation 
framework. Simplifying assumptions about the joint measurement statistics are often made 
in order to yield tractable analytic forms. For example Hershey and Movellan have shown 
that correlations between video data and audio can be used to highlight regions of the 
image which are the "cause" of the audio signal. While such pragmatic choices may lead to 
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simple statistical measures, they do so at the cost of modeling capacity. Furthermore, these 
assumptions may not be appropriate for fusing modalities such as video and audio. The 
joint statistics for these and many other mixed modal signals are not well understood and 
are not well-modeled by simple densities such as multi-variate exponential distributions. 
For example, face motions and speech sounds are related in very complex ways. 

A critical question is whether, in the absence of an adequate parametric model for joint 
measurement statistics, can one integrate measurements in a principled way without dis­
counting statistical uncertainty. This suggests that a nonparametric statistical approach may 
be warranted. In the nonparametric statistical framework principles such as MAP and ML 
are equivalent to the information theoretic concepts of mutual information and entropy. 
Consequently we suggest an approach for learning maximally informative joint subspaces 
for multi-media signal analysis. The technique is a natural application of [8, 3, 5, 4] which 
formulates a learning approach by which the entropy, and by extension the mutual infor­
mation, of a differentiable map may be optimized. 

By way of illustration we present results of audio/video analysis using the suggested ap­
proach on both simulated and real data. In the experiments we are able to show significant 
audio signal enhancement and video source localization. 

2 Information Preserving Transformations 

Entropy is a useful statistical measure as it captures uncertainty in a general way. As the 
entropy of a density decreases so does the volume of the typical set [2] . Similarly, mutual 
information quantifies the information (uncertainty reduction) that two random variables 
convey about each other. The challenge of using such a measure for learning is that they 
are integral functions of densities (densities which must be inferred from samples). 

2.1 Maximally Informative Subspaces 

In order to make the problem tractable we project high dimensional audio and video mea­
surements to low dimensional subspaces. The parameters of the sub-space are not chosen 
in an ad hoc fashion, but are learned by maximizing the mutual information between the 
derived features. Specifically, let Vi '" V E ~Nv and ai '" A E ~Na be video and audio 
measurements, respectively, taken at time i . Let f v : ~Nv f-f ~Mv and f a : ~Na f-f ~Ma 
be mappings parameterized by the vectors etv and eta , respectively. In our experiments f v 
and f a are single-layer perceptrons and M v = Ma = 1. The method extends to any differ­
entiable mapping and output dimensionality [3]. During adaptation the parameters vectors 
etv and eta (the perceptron weights) are chosen such that 

(1) 

This process is ilustrated notionally in figure 1 in which video frames and sequences of 
periodogram coefficients are projected to scalar values. A clear advantage of learning a 
projection is that rather than requiring pixels of the video frames or spectral coefficients to 
be inspected individually the projection summarizes the entire set efficiently into two scalar 
values (one for video and one for audio). 

We have little reason to believe that joint audio/video measurements are accurately charac­
terized by simple parametric models (e.g. exponential or uni-modal densities) . Moreover, 
low dimensional projections which do not preserve this complex structure will not capture 
the true form of the relationship (i.e. random low dimensional projections of structured 
data are typically gaussian). The low dimensional projections which are learned by maxi­
mizing mutual information reduce the complexity of the joint distribution, but still preserve 
the important and potentially complex relationships between audio and visual signals. This 
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Figure 1: Fusion Figure: Projection to Subspace 

possibility motivates the methodology of [3, 8] in which the density in the joint subspace 
is modeled nonparametrically. 

This brings us to the natural question regarding the utitility of the learned supspace. There 
are a variety of ways the subspace and the associated joint density might be used to, for 
example, manipulate one of the disparate signals based on another. For the particular ap­
plications we address in our experiments we shall see that it is the mapping parameters 
{ av , aa} which will be most useful. We will illustrate the details as we go through the 
experiments. 

3 Empirical Results 

In order to demonstrate the efficacy of the approach we present a series of audio/video anal­
ysis experiments of increasing complexity. In these experiments, two sub-space mappings 
are learned, one from video and another from audio. 

In all cases, video data is sampled at 30 frames/second. We use both pixel based represen­
tations (raw pixel data) and motion based representations (i.e. optical flow [1]). Anandan's 
optical flow algorithm [1] is a coarse-to-fine method, implemented on a Laplacian pyramid, 
based on minimizing the sum of squared differences between frames. Confidence measures 
are derived from fitted quadratic surface principle curvatures. A smoothness constraint is 
also applied to the final velocity estimates. When raw video is used as an input to the sub­
space mapper, the pixels are collected into a single vector. The raw video images range in 
resolution from 240 by 180 (i.e .. 43,200 dimensions) to 320 by 240 (i.e. 76,800 dimen­
sions). When optical flow is used as an input to the sub-space mapper, vector valued flow 
for each pixel is collected into a single vector, yielding an input vector with twice as many 
dimensions as pixels. 

Audio data is sampled at 11.025 KHz. Raw audio is transformed into periodogram coeffi­
cients. Periodograms are computed using hamming windows of 5.4 ms duration sampled at 
30 Hz (commensurate with the video rate). At each point in time there are 513 periodogram 
coefficients input to the sub-space mapper. 



Figure 2: Synthetic image sequence examples (left). Mouth parameters are functionally 
related to one audio signal. Flow fields horizontal component (center) and vertical compo­
nent (right). 

3.1 A Simple Synthetic Example 

We begin with a simple synthetic example. The goal of the experiment is to use a video 
sequence to enhance an associated audio sequence. Figure 2 shows examples from a syn­
thetically generated image sequence of faces (and the associated optical flow field). In the 
sequence the mouth is described by an ellipse. The parameters of the ellipse are function­
ally related to a recorded audio signal. Specifically, the area of the ellipse is proportional 
to the average power of the audio signal (computed over the same periodogram window) 
while the eccentricity is controlled by the the entropy of the normalized periodogram. Con­
sequently, observed changes in the image sequence are functionally related to the recorded 
audio signal. It is not necessary (right now) that the relationship be realistic, only that it 
exists. The associated audio signal is mixed with an interfering, or noise, signal. Their 
spectra, shown in figure 3 (left), are clearly overlapped. 

If the power spectrum of the associated and interfering signals were known then the optimal 
filter for recovering the associated audio sequence is the Wiener filter. It's spectrum is 
described by 

Pa(f) 
H(f) = Pa(f) + Pn(f) (2) 

where Pa (f) is the power spectrum of the desired signal and Pn (f) is the power spectrum 
of the interfering signal. In general this information is unknown, but for our experiments 
it is useful as a benchmark for comparison purposes as it represents an upper bound on 
performance. That is, in a second-order sense, all filters (including ours) will underperform 
the Wiener filter. Furthermore, suppose y = Sa + n where Sa is the signal of interest and n 
is an independent interference signal. It can be shown that 

( 2..) - ~ n - l _ p2 (3) 

where p is the correlation coefficient between Sa and the corrupted version y and (ri:) is the 
signal to noise power ratio (SNR). Consequently given a reference signal and some signal 
plus interferer we can use the relationships above to gauge signal enhancement. 

The question we address is that in the absence of knowing the separate power spectra, which 
are necessary to implement the Wiener filter, how do we compare using the associated 
video data. It is not immediately obvious how one might achieve signal enhancement by 
learning a joint subspace in the manner described. Our intuition is as follows. For this 
simple case it is only the associated audio signal which bears any relationship to the video 
sequence. Furthermore, the coefficients of the audio projection, exa correspond to spectral 
coefficients. Our reasoning is that large magnitude coefficients correspond those spectral 
components which have more signal component than those with small magnitude. Using 
this reasoning we can construct a filter whose coefficients are proportional to our projection 
exa. Specifically, we use the following to design our filter 

H (f) = {J ( lexa (f) I- min( lexa (f)l) ) + 1 - {J . 0 < (J < 1 (4) 
MI max (lexa(f)I) - min(lexa(f) I) 2' - -
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Figure 3: Spectra of audio signals (right). Solid line indicates the desired audio component 
while the dashed line indicates the interference. 

where aa (f) are the audio projection coefficients associated with spectral coeffiecient, f. 
For our experiements, fJ = 0.90, consequently 0.5 ::; HMI (f ) ::; 0.95. While somewhat 
ad hoc the filter is consistent with our reasoning above and, as we shall see, yields good 
results. 

Furthermore, because the signal and interferer are known (in our experimental set up) we 
can compare our results to the unachievable, yet optimal, Wiener filter for this case. In this 
case the SNR was 0 dB, furthermore as the two signals have significant spectral overlap, 
signal recovery is challenging. The optimal Wiener filter achieves a signal processing gain 
of 2.6 dB while the filter constructed as described achieves 2.0 dB (when using images 
directly) and 2.1 db when using optical flow. 

3.2 Video Attribution of Single Audio Source 

The previous example demonstrated that the audio projection coefficients could be used 
to reduce an interfering signal. We move now to a different experiment using real data. 
Figure 4(a) shows a video frame from the sequence used in the next experiment. In the 
scene there is a person speaking in the foreground, a person moving in the background 
and a monitor which is flickering. There is a single audio signal source (of the speaker) 
but several interfering motion fields in the video sequence. Figures 4(b) is the pixel-wise 
standard deviations of the video sequence while figure 4( c) shows the pixel-wise flow field 
energy. These images show that there are many sources of change in the image. Note 
that the most intense changes in the image sequence are associated with the monitor and 
not the speaker. Our goal with this experiment is to show that via the method described 
we can properly attribute the region of the video image which is associated with the audio 
sequence. The intuition is similar to the previous experiment. We expect that large image 
projection coefficients, a v correspond to those pixels which are related to the audio signal. 
Figure 4(d) shows the image a v when images are fed directly into the algorithm while 
figure 4(e) shows the same image when flow-fields are the input. Clearly both cases have 
detected regions associated with the speaker with the substantive difference being that the 
use of flow fields resulted in a smoother attribution. 

3.3 User-assisted Audio Enhancement 

We now repeat the initial synthetic experiment of 3.1 using real data. In this case there are 
two speakers recorded with a single microphone (the speakers were recorded with stereo 
microphones so as to obtain a reference, but the experiments used a single mixed audio 
source). Figure Sea) shows an example frame from the video sequence. We now demon­
strate the ability to enhance the audio signal in a user-assisted fashion. By selecting data 
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Figure 4: Video attribution: (a) example image, (b) pixel standard deviations, (c) flow 
vector energy, (d) image of (tv (pixel features), (e) flow field features 

(a) (b) (c) 

Figure 5: User assisted audio enhancement: (a) example image, with user chosen regions, 
(b) image of (tv for region 1, (c) image of (tv region 2 

from one box or the other in figure 5(a) we can enhance the voice of the speaker on the left 
or right. As the original data was collected with stereo microphones we can again com­
pare our result to an approximation to the Wiener filter (neglecting cross channel leakage). 
In this case, due to the fact that the speakers are male and female, the signals have better 
spectral separation. Consequently the Wiener filter achieves a better signal processing gain. 
For the male speaker the Wiener filter improves the SNR by 10.43 dB, while for the female 
speaker the improvement is 10.5 dB . Using our technique we are able to achieve a 8.9 dB 
SNR gain (pixel based) and 9.2 dB SNR gain (optic flow based) for the male speaker while 
for the female speaker we achieve 5.7 and 5.6 dB, respectively. 

It is not clear why performance is not as good for the female speaker, but figures 5(b) and (c) 
are provided by way of partial explanation. Having recovered the audio in the user-assisted 
fashion described we used the recovered audio signal for video attribution (pixel-based) of 
the entire scene. Figures 5(b) and (c) are the images of the resulting (tv when using the 
male (b) and female (c) recovered voice signals. The attribution of the male speaker in (b) 
appears to be clearer than that of (c). This may be an indication that the video cues were 
not as detectable for the female speaker as they were for the male in this experiment. In 
any event these results are consistent with the enhancement results described above. 

4 Applications 

There are several practical applications for the techniques described in this paper. One 
key area is speech recognition. Recent commercial advances in speech recognition rely on 
careful placement of the microphone so that background sounds are minimized. Results in 
more natural environments, where the microphone is some distance from the speaker and 
there is significant background noise, are disappointing. Our approach may prove useful for 
teleconferencing, where audio and video of multiple speakers is recorded simultaneously. 

Other applications include broadcast television in situations where careful microphone 
placement is not possible, or post-hoc processing to enhance the audio channel might prove 



valuable. For example, if one speaker's microphone at a news conference malfunctions, the 
voice of that speaker might be enhanced with the aid of video information. 

5 Conclusions 

One key contribution of this paper is to extend the notion of multi-media fusion to complex 
domains in which the statistical relationships between audio and video is complex and non­
gaussian. This is claim is supported in part by the results of Slaney and Covell in which 
canonical correlations failed to detect audio/video synchrony when a spectral representa­
tion was used for the audio signal [7]. Previous approaches have attempted to model these 
relationships using simple models such as measuring the short term correlation between 
pixel values and the sound signal [6]. The power of the non-parametric mutual information 
approach allows our technique to handle complex non-linear relationships between audio 
and video signals. One demonstration of this modeling flexibility, is the insensitivity to 
the form of the input signals. Experiments were performed using raw pixel intensities as 
well as optical flows (which is a complex non-linear function of pixel values across time), 
yielding similar results. 

Another key contribution is to establish an important application for this approach, video 
enhanced audio segmentation. Initial experiments have shown that information from the 
video signal can be used to reduce the noise in a simultaneously recorded audio signal. 
Noise is reduced without any a priori information about the form of the audio signal or 
noise. Surprisingly, in our limited experiments, the noise reduction approaches what is 
possible using a priori knowledge of the audio signal (using Weiner filtering). 
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