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Abstract 

Although connectionist models have provided insights into the nature of 
perception and motor control, connectionist accounts of higher cognition 
seldom go beyond an implementation of traditional symbol-processing 
theories. We describe a connectionist constraint satisfaction model of 
how people solve anagram problems. The model exploits statistics of 
English orthography, but also addresses the interplay of sub symbolic 
and symbolic computation by a mechanism that extracts approximate 
symbolic representations (partial orderings of letters) from sub symbolic 
structures and injects the extracted representation back into the model 
to assist in the solution of the anagram. We show the computational 
benefit of this extraction-injection process and discuss its relationship to 
conscious mental processes and working memory. We also account for 
experimental data concerning the difficulty of anagram solution based on 
the orthographic structure of the anagram string and the target word. 

Historically, the mind has been viewed from two opposing computational perspectives. 
The symbolic perspective views the mind as a symbolic information processing engine. 
According to this perspective, cognition operates on representations that encode logical 
relationships among discrete symbolic elements, such as stacks and structured trees, and 
cognition involves basic operations such as means-ends analysis and best-first search. In 
contrast, the subsymbolic perspective views the mind as performing statistical inference, 
and involves basic operations such as constraint-satisfaction search. The data structures on 
which these operations take place are numerical vectors. 

In some domains of cognition, significant progress has been made through analysis from 
one computational perspective or the other. The thesis of our work is that many of these do­
mains might be understood more completely by focusing on the interplay of subsymbolic 
and symbolic information processing. Consider the higher-cognitive domain of problem 
solving. At an abstract level of description, problem solving tasks can readily be formal­
ized in terms of symbolic representations and operations. However, the neurobiological 
hardware that underlies human cognition appears to be subsymbolic-representations are 
noisy and graded, and the brain operates and adapts in a continuous fashion that is diffi­
cult to characterize in discrete symbolic terms. At some level-between the computational 
level of the task description and the implementation level of human neurobiology-the 
symbolic and subsymbolic accounts must come into contact with one another. We focus 
on this point of contact by proposing mechanisms by which symbolic representations can 
modulate sub symbolic processing, and mechanisms by which subsymbolic representations 



are made symbolic. We conjecture that these mechanisms can not only provide an account 
for the interplay of symbolic and sub symbolic processes in cognition, but that they form 
a sensible computational strategy that outperforms purely subsymbolic computation, and 
hence, symbolic reasoning makes sense from an evolutionary perspective. 

In this paper, we apply our approach to a high-level cognitive task, anagram problem solv­
ing. An anagram is a nonsense string of letters whose letters can be rearranged to form 
a word. For example, the solution to the anagram puzzle RYTEHO is THEORY. Anagram 
solving is a interesting task because it taps higher cognitive abilities and issues of aware­
ness, it has a tractable state space, and interesting psychological data is available to model. 

1 A Sub symbolic Computational Model 

We start by presenting a purely subsymbolic model of anagram processing. By subsym­
bolic, we mean that the model utilizes only English orthographic statistics and does not 
have access to an English lexicon. We will argue that this model proves insufficient to ex­
plain human performance on anagram problem solving. However, it is a key component of 
a hybrid symbolic-subsymbolic model we propose, and is thus described in detail. 

1.1 Problem Representation 

A computational model of anagram processing must represent letter orderings. For ex­
ample, the model must be capable of representing a solution such as <THEORY>, or any 
permutation of the letters such as <RYTEHO>. (The symbols "<" and ">" will be used 
to delimit the beginning and end of a string, respectively.) We adopted a representation 
of letter strings in which a string is encoded by the set of letter pairs (hereafter, bigrams) 
contained in the string; for example, the bigrams in <THEORY> are: <T, TH, HE, EO, OR, 
RY, and Y>. The delimiters < and > are treated as ordinary symbols of the alphabet. We 
capture letter pairings in a symbolic letter-ordering matrix, or symbolic ordering for short. 
Figure lea) shows the matrix, in which the rows indicate the first letter of the bigram, and 
the columns indicate the second. A cell of the matrix contains a value of I if the corre­
sponding bigram is present in the string. (This matrix formalism and all procedures in the 
paper can be extended to handle strings with repeated letters, which we do not have space to 
discuss.) The matrix columns and rows can be thought of as consisting of all letters from A 

to z, along with the delimiters < and>. However, in the Figure we have omitted rows and 
columns corresponding to letters not present in the anagram. Similarly, we have omitted 
the < from the column space and the> from row space, as they could not by definition be 
part of any bigram. The seven bigrams indicated by the seven ones in the Figure uniquely 
specify the string THEORY. 

As we've described the matrix, cells contain the truth value of the proposition that a par­
ticular bigram appears in the string being represented. However, the cell values have an 
interesting alternative interpretation: as the probability that a particular bigram is present. 
Figure l(b) illustrates a matrix of this sort, which we call a subsymbolic letter ordering 
matrix, or subsymbolic ordering for short. In the Figure, the bigram TH occurs with prob­
ability 0.8. Although the symbolic orderings are obviously a subset of the sub symbolic 
orderings, the two representations play critically disparate roles in our model, and thus are 
treated as separate entities. 

To formally characterize symbolic and subsymbolic ordering matrices, we define a mask 
vector, /-£, having N = 28 elements, corresponding to the 26 letters of the alphabet plus 
the two delimiters. Element i of the mask, /-£i, is set to one if the corresponding letter 
appears in the anagram string and zero if it does not. In both the symbolic and sub symbolic 
orderings, the matrices are constrained such that elements in row i and column i must sum 



E H 0 R T Y > E H 0 R T Y > E H 0 R T Y > 

< 0 0 0 0 1 0 0 < 0 0 .2 0 .6 .2 0 < 0 0 0 0 1 0 0 

E 0 0 1 0 0 0 0 E .2 0 .3 .3 .1 0 .1 E 0 0 0 0 0 0 0 

H 1 0 0 0 0 0 0 H .6 0 .3 0 0 .1 0 H 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 .1 .2 0 .5 .1 0 .1 0 0 0 0 0 0 0 0 

R 0 0 0 0 0 1 0 R 0 0 .1 0 .2 .7 0 R 0 0 0 0 0 1 0 

T 0 1 0 0 0 0 0 T .1 .8 0 .1 0 0 0 T 0 1 0 0 0 0 0 

Y 0 0 0 0 0 0 1 Y 0 0 .1 .1 0 0 .8 Y 0 0 0 0 0 0 0 

(a) (b) (c) 

Figure 1: (a) A symbolic letter-ordering matrix for the string THEORY. (b) A subsymbolic letter­
ordering matrix whose cells indicate the probabilities that particular bigrams are present in a letter 
string. (c) A symbolic partial letter-ordering matrix, formed from the symbolic ordering matrix by 
setting to zero a subset of the elements, which are highlighted in grey. The resulting matrix represents 
the partial ordering { <TH, RY }. 

to J.Li. If one extracts all rows and columns for which J.Li = 1 from a symbolic ordering, as 
we have done in Figure l(a), a permutation matrix is obtained. If one extracts all rows and 
columns for which J.Li = 1 from a sub symbolic ordering, as we have done in Figure l(b), 
the resulting matrix is known as doubly stochastic, because each row and column vector 
can each be interpreted as a probability distribution. 

1.2 Constraint Satisfaction Network 

A simple computational model can be conceptualized by considering each cell in the sub­
symbolic ordering matrix to correspond to a standard connectionist unit, and to consider 
each cell value as the activity level of the unit. In this conceptualization, the goal of the 
connectionist network is to obtain a pattern of activity corresponding to the solution word, 
given the anagram. We wish for the model to rely solely on orthographic statistics of En­
glish, avoiding lexical knowledge at this stage. Our premise is that an interactive model-a 
model that allows for top-down lexical knowledge to come in contact with the bottom-up 
information about the anagram-would be too powerful; i.e., the model would be super­
human in its ability to identify lexical entries containing a target set of letters. Instead, 
we conjecture that a suitable model of human performance should be primarily bottom-up, 
attempting to order letters without the benefit of the lexicon. Of course, the task cannot be 
performed without a lexicon, but we defer discussion of the role of the lexicon until we first 
present the core connectionist component of the model. 

The connectionist model is driven by three constraints : (1) solutions should contain bi­
grams with high frequency in English, (2) solutions should contain trigrams with high 
frequency in English, and (3) solutions should contain bigrams that are consistent with the 
bigrams in the original anagram. The first two constraints attempt to obtain English-like 
strings. The third constraint is motivated by the observation that anagram solution time 
depends on the arrangement of letters in the original anagram (e.g. , Mayzner & Tresselt, 
1959). The three constraints are embodied by a constraint-satisfaction network with the 
following harmony function : 

H = L f3ijPij + W LTijkPijPjk + ~ LPijSij (1) 
lj ljk lj 

where Pij denotes the value of the cell corresponding to bigram ij, f3ij is monotonically 
related to the frequency of bigram ij in English, Tijk is monotonically related to the fre­
quency of trigram ijk in English, Sij is 1 if the original anagram contained bigram ij or 
o otherwise, and W and ~ are model parameters that specify the relative weighting of the 
trigram and unchanged-ordering constraints, respectively. 
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Figure 2: The Iterative Extraction-Injection Model 

The harmony function specifies a measure of goodness of a given matrix in terms of the 
degree to which the three sets of constraints are satisfied. Running the connectionist net­
work corresponds to searching for a local optimum in the harmony function. The local 
optimum can be found by gradient ascent, i.e., defining a unit-update rule that moves up­
hill in harmony. Such a rule can be obtained via the derivative of the harmony function: 
A {}H 

I....l.Pij = E {}Pi; • 

Although the update rule ensures that harmony will increase over time, the network state 
may violate the conditions of the doubly stochastic matrix by allowing the Pij to take on val­
ues outside of [0, 1], or by failing to satisfy the row and column constraints. The procedure 
applied to enforce the row and column constraints involves renormalizing the activities af­
ter each harmony update to bring the activity pattern arbitrarily close to a doubly-stochastic 
matrix. The procedure, suggested by Sinkhorn (1964), involves alternating row and col­
umn normalizations (in our case to the values of the mask vector). Sinkhorn proved that 
this procedure will asymptotically converge on a doubly stochastic matrix. Note that the 
Sinkhorn normalization procedure must operate at a much finer time grain than the har­
mony updates, in order to ensure that the updates do not cause the state to wander from the 
space of doubly stochastic matrices. 

2 The Iterative Extraction-Injection Model 

The constraint-satisfaction network we just described is inadequate as a model of human 
anagram problem solving for two principle reasons. First, the network output generally 
does not correspond to a symbolic ordering, and hence has no immediate interpretation as a 
letter string. Second, the network has no access to a lexicon so it cannot possibly determine 
if a candidate solution is a word. These two concerns are handled by introducing additional 
processing components to the model. The components-called extraction, verification, and 
injection-bring subsymbolic representations of the constraint-satisfaction network into 
contact with the symbolic realm. 

The extraction component converts a sub symbolic ordering-the output of the constraint­
satisfaction network-into a symbolic ordering. This symbolic ordering serves as a can­
didate solution to the anagram. The verification component queries the lexicon to retrieve 
words that match or are very close to the candidate solution. If no lexical item is retrieved 
that can serve as a solution, the injection component feeds the candidate solution back 



into the constraint-satisfaction network in the form of a bias on subsequent processing, 
in exactly the same way that the original anagram did on the first iteration of constraint 
satisfaction. 

Figure 2 shows a high-level sketch of the complete model. The intuition behind this ar­
chitecture is as follows. The symbolic ordering extracted on one iteration will serve to 
constrain the model's interpretation of the anagram on the next iteration. Consequently, 
the feedback forces the model down one path in a solution tree. When viewed from a high 
level, the model steps through a sequence of symbolic states. The transitions among sym­
bolic states, however, are driven by the subsymbolic constraint-satisfaction network. To 
reflect the importance of the interplay between symbolic and subsymbolic processing, we 
call the architecture the iterative extraction-injection model. 

Before describing the extraction, verification, and injection components in detail, we em­
phasize one point about the role of the lexicon. The model makes a strong claim about 
the sort of knowledge used to guide the solution of anagrams. Lexical knowledge is used 
only for verification, not for generation of candidate solutions. The limited use of the lex­
icon restricts the computational capabilities of the model, but in a way that we conjecture 
corresponds to human limitations. 

2.1 Symbolic Extraction 

The extraction component transforms the subsymbolic ordering matrix to an approximately 
equivalent symbolic ordering matrix. In essence, the extraction component treats the net­
work activities as probabilities that pairs of letters will be joined, and samples a symbolic 
matrix from this probability distribution, subject to the restriction that each letter can pre­
cede or follow at most one other letter. 

If sub symbolic matrix element Pij has a value close to 1, then it is clear that bigram ij 
should be included in the symbolic ordering. However, if a row or column of a sub symbolic 
ordering matrix is close to uniform, the selection of a bigram in that row or column will 
be somewhat arbitrary. Consequently, we endow the model with the ability to select only 
some bigrams and leave other letter pairings unspecified. Thus, we allow the extraction 
component to consider symbolic partial orderings-i.e., a subset of the letter pairings in a 
complete ordering. For example, { <TH, RY } is a partial ordering that specifies that the T 

and H belong together in sequence at the beginning of the word, and the R should precede 
the Y, but does not specify the relation of these letter clusters to one another or to other 
letters of the anagram. Formally, a symbolic partial ordering matrix is a binary matrix in 
which the row and columns sum to values less than or equal to the corresponding mask 
value. A symbolic partial ordering can be formed by setting to zero some elements of a 
symbolic ordering (Figure l(c». 

In the context of this task, a sub symbolic ordering is best viewed as a set of parameters 
specifying a distribution over a space P of all possible symbolic partial ordering matrices. 
Rather than explicitly generating and assigning probabilities to each element in P, our ap­
proach samples from the distribution specified by the subsymbolic ordering using Markov 
Chain Monte Carlo (Neal, 1993). Our MCMC method obtains samples consistent with the 
bigram probabilities Pij and the row and column constraints, J-Lj. 

2.2 Lexical Verification 

Lexical verification involves consulting the lexicon to identify and validate candidate solu­
tions. The extracted symbolic partial ordering is fed into the lexical verification component 
to identify a set of words, each of which is consistent with the partial ordering. By consis­
tent, we mean the word contains all of the bigrams in the partial ordering. This set of words 
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Figure 3: (a) Probability of finding solution for different word lengths as a function of number of 
iterations. (b) Convergence of the extraction-injection model and variants of the feedback mechanism. 

is then checked to see if any word contains the same letters as the anagram. If so, the lexical 
verifier returns that the problem is solved, Otherwise, the lexical verifier indicates failure. 
Because the list of consistent words can be extremely large, and recalling and processing 
a large number of candidates seems implausible, we limit the size of the consistent set by 
introducing a recall parameter 'fJ that controls the maximum size of the consistent set. If the 
actual number of consistent words is larger, a random sample of size 'fJ is retrieved. 

2.3 Injection 

When the lexical verification component fails, the symbolic partial ordering is injected into 
the constraint-satisfaction network, replacing the letter ordering of the original anagram, 
and a new processing iteration begins. Were it not for new bias injected into the constraint 
satisfaction network, the constraint-satisfaction network would produce the same output 
as on the previous iteration, and the model would likely become stuck without finding a 
solution. In our experiments, we show that injecting the symbolic partial ordering allows 
the model to arrive at a solution more rapidly than other sorts of feedback. 

3 Results and Discussion 

Through simulation of our architecture we modeled several basic findings concerning hu­
man anagram problem solving. In our simulations, we define the model solution time to be 
the number of extraction-injection iterations before the solution word is identified. 

Figure 3(a) shows the probability of the model finding the a solution as a function of the 
number of iterations the model is allowed to run and the number of letters in the word set. 
The data set consists of 40 examples for each of five different word lengths. The most 
striking result is that the probability of finding a solution increases monotonically over 
time. It is also interesting to note that the model's asymptotic accuracy is 100%, indicating 
that the model is computationally sufficient to perform the task. Of more significance is 
the fact that the model exhibits the word length effect as reported in Sargent (1940), that is, 
longer words take more time to solve. 

Our model can explain other experimental results on anagram problem solving. Mayzner 
and Tresselt (1958) found that subjects were faster to find solutions composed of high fre­
quency bigrams than solutions composed of low frequency bigrams. For example, SHIN 

contains higher frequency bigrams than HYMN. The iterative extraction-injection model 
reproduced this effect in the solution time to two classes of five five-letter words. Each 



word was presented 30 times to obtain a distribution of solution times. A mean of 5.3 
iterations was required for solutions composed of high frequency bigrams, compared to a 
mean of 21.2 iterations for solutions composed of low frequency bigrams. The difference 
is statistically reliable (F(l, 8) = 30.3,p < .001). It is not surprising that the model pro­
duces this result, as the constraint-satisfaction network attempts to generate high frequency 
pairings of letters. 

Mayzner and Tresselt (1959) found that subjects also are faster to solve an anagram if 
the anagram is composed of low frequency bigrams. For example, RCDA might be recog­
nized as CARD more readily than would DACR. Our model reproduces this result as well. 
We tested the model with 25 four-letter target words whose letters could be rearranged 
to form anagrams with either low or high bigram frequency ; each target word was pre­
sented 30 times. The mean solution time for low bigram-frequency anagrams was 21.4, 
versus 27.6 for high bigram-frequency anagrams. This difference is statistically reliable 
(F(1,24) = 41.4, p < .001). The difference is explained by the model's initial bias to 
search for solutions containing bigrams in the anagram, plus the fact that the model has a 
harder time pulling apart bigrams with high frequency. 

Simulation results to date have focused on the computational properties of the model, with 
the goal of showing that the iterative extraction-injection process leads to efficient solution 
times. The experiments involve testing performance of models with some aspect of the 
iterative extraction-injection model modified. Three such variants were tested: 1) the feed­
back connection was removed, 2) random symbolic partial orderings were fed-back, and 
3) sub symbolic partial orderings were fed-back. The experiment consisted of 125 words 
taken from Kucera and Francis (1967) corpus, which was also used for bigram and trigram 
frequencies. The median of25 solution times for each word/model was used to compute the 
mean solution time for the original, no feedback, random feedback, and continuous feed­
back: 13.43, 41.88,74.91 , 43.17. The key result is that the iterative extraction-injection 
model was reliably 3-5 faster than the variants, as respective F(l, l24,p < 0.001) scores 
were 87.8, 154.3, 99.1. Figure 3(b) shows the probability that each of these four models 
found the solution at a given time. 

Although our investigation of this architecture is just beginning, we have shown that the 
model can explain some fundamental behavioral data, and that surprising computational 
power arises from the interplay of symbolic and subsymbolic information processing. 
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