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Abstract 

The strong correlation between the frequency of words and their naming 
latency has been well documented. However, as early as 1973, the Age 
of Acquisition (AoA) of a word was alleged to be the actual variable of 
interest, but these studies seem to have been ignored in most of the lit­
erature. Recently, there has been a resurgence of interest in AoA. While 
some studies have shown that frequency has no effect when AoA is con­
trolled for, more recent studies have found independent contributions of 
frequency and AoA. Connectionist models have repeatedly shown strong 
effects of frequency, but little attention has been paid to whether they 
can also show AoA effects. Indeed, several researchers have explicitly 
claimed that they cannot show AoA effects. In this work, we explore 
these claims using a simple feed forward neural network. We find a sig­
nificant contribution of AoA to naming latency, as well as conditions 
under which frequency provides an independent contribution. 

1 Background 

Naming latency is the time between the presentation of a picture or written word and the 
beginning of the correct utterance of that word. It is undisputed that there are significant 
differences in the naming latency of many words, even when controlling word length, syl­
labic complexity, and other structural variants. The cause of differences in naming latency 
has been the subject of numerous studies. Earlier studies found that the frequency with 
which a word appears in spoken English is the best determinant of its naming latency (Old­
field & Wingfield, 1965). More recent psychological studies, however, show that the age 
at which a word is learned, or its Age of Acquisition (AoA), may be a better predictor 
of naming latency. Further, in many multiple regression analyses, frequency is not found 
to be significant when AoA is controlled for (Brown & Watson, 1987; Carroll & White, 
1973; Morrison et al. 1992; Morrison & Ellis, 1995). These studies show that frequency 
and AoA are highly correlated (typically r = -.6) explaining the confound of older studies 
on frequency. However, still more recent studies question this finding and find that both 
AoA and frequency are significant and contribute independently to naming latency (Ellis 
& Morrison, 1998; Gerhand & Barry, 1998,1999). 

Much like their psychological counterparts, connectionist networks also show very strong 
frequency effects. However, the ability of a connectionist network to show AoA effects has 
been doubted (Gerhand & Barry, 1998; Morrison & Ellis, 1995). Most of these claims are 



based on the well known fact that connectionist networks exhibit "destructive interference" 
in which later presented stimuli, in order to be learned, force early learned inputs to become 
less well represented, effectively increasing their associated errors. However, these effects 
only occur when training ceases on the early patterns. Continued training on all the patterns 
mitigates the effects of interference from later patterns. 

Recently, Ellis & Lambon-Ralph (in press) have shown that when pattern presentation is 
staged, with one set of patterns initially trained, and a second set added into the training set 
later, strong AoA effects are found. They show that this result is due to a loss of plasticity 
in the network units, which tend to get out of the linear range with more training. While 
this result is not surprising, it is a good model of the fact that some words may not come 
into existence until late in life, such as "email" for baby boomers. However, they explicitly 
claim that it is important to stage the learning in this way, and offer no explanation of 
what happens during early word acquisition, when the surrounding vocabulary is relatively 
constant, or why and when frequency and AoA show independent effects. 

In this paper, we present an abstract feed-forward computational model of word acquisition 
that does not stage inputs. We use this model to examine the effects of frequency and AoA 
on sum squared error, the usual variable used to model reaction time. We find a consistent 
contribution of AoA to naming latency, as well as the conditions under which there is an 
independent contribution from frequency in some tasks. 

2 Experiment 1: Do networks show AoA effects? 

Our first goal was to show that AoA effects could be observed in a connectionist network 
using the simplest possible model. First, we need to define AoA in a network. We did 
this is such a way that staging the inputs was not necessary: we defined a threshold for 
the error, after which we would say a pattern has been "acquired." The AoA is defined to 
be the epoch during which this threshold is crossed. Since error for a particular pattern 
may occasionally go up again during online learning, we also measured the last epoch that 
the pattern went below the threshold for final time. We analyzed our networks using both 
definitions of acquisition (which we call first acquisition and final acquisition), and have 
found that the results vary little between these definitions. In what follows, we use first 
acquisition for simplicity. 

2.1 The Model 

The simplest possible model is an autoencoder network. Using a network architecture of 
20-15-20, we trained the network to autoencode 200 patterns of random bits (each bit had a 
50% probability of being on or off). We initialized weights randomly with a flat distribution 
of values between 0.1 and -0.1, used a learning rate of 0.001 and momentum of 0.9. 

For this experiment, we chose the AoA threshold to be 2, indicating an average squared 
error of .1 per input bit, yielding outputs much closer to the correct output than any other. 
We calculated Euclidean distances between all outputs and patterns to verify that the input 
was mapped most closely to the correct output. Training on the entire corpus continued 
until 98% of all patterns fell below this threshold. 

2.2 Results 

After the network had learned the input corpus, we investigated the relationship between 
the epoch at which the input vector had been learned and the final sum squared error (equiv­
alent, for us, to "adult" naming latency) for that input vector. These results are presented 
in Figure 1. The relationship between the age of acquisition of the input vector and its 



'1'$Iac:q llSlll C)n ... 
' 1'$Iac:qui sl lon reW""sion -

final oc;qllS~lon " 
Inalac:q''''l onmW''''slon 

',~-;:,OOO-=~-----;~=-,----C_:::---=,OO,------,OO=,-----:~=---;:"OO~~' 
EpDdlo1 L ....... In~ 

Figure 1: Exp. 1. Final SSE vs. AoA. 
Freq.w:ncyDlAppe"''''''''' 

, rT----~----~----~------, 

,,~----~-===~,;,, ====~;===~ 
PallarnNumbe, 

Figure 3: Exp. 2 Frequency Distribution 

'~,----C,oo:::---=~,-----;~=,~,oo=---=oo,~=~-----;ro=-,~",~, ~~ 
EpoMNlI'11Df1' 

Figure 2: SSs.m~t!:P~9!!..!?'y Percentile 
''-~~7",.~~~",~"OO~' ~~~~~~--' 

~,staoq""!""""IJ'assoon -
"nataoqu'srtoon " 

',nataoqltlS,bon'''IJ'assoon 

.' 

"!--'::'OO:-, ---:::'------:;:::-=MOO:-::'OO=";--;;;;",,:::-OO ---:,=."":;--;:"!::,,,,'---::!,,oo:::-, ---;:!",oo, 
EpochDlLoatnlr'lg 

Figure 4: Exp. 2 Final SSE vs. AoA 

final sum squared error is clear: the earlier an input is learned, the lower its final error will 
be. A more formal analysis of this relationship yields a significant (p « .005) correlation 
coefficient of r=0.749 averaged over 10 runs of the network. 

In order to understand this relationship better, we divided the learned words into five per­
centile groups depending upon AoA. Figure 2 shows the average SSE for each group plotted 
over epoch number. The line with the least average SSE corresponds to the earliest acquired 
quintile while the line with the highest average SSE corresponds to the last acquired quin­
tile. From this graph we can see that the average SSE for earlier learned patterns stays 
below errors for late learned patterns. This is true from the outset of learning as well as 
when the error starts to decrease less rapidly as it asymptotically approaches some lowest 
error limit. We sloganize this result as "the patterns that get to the weights first, win." 

3 Experiment 2: Do AoA effects survive a frequency manipulation? 

Having displayed that AoA effects are present in connectionist networks, we wanted to 
investigate the interaction with frequency. We model the frequency distribution of inputs 
after the known English spoken word frequency in which very few words appear very 
often while a very large portion of words appear very seldom (Zipf's law). The frequency 
distribution we used (presentation probability= 0.05 + 0.95 * ((1 - (l.O/numinputs) * 
inpuLnumber) +0.05)10) is presented in Figure 3 (a true version of Zipf's law still shows 
the result). Otherwise, all parameters are the same as Exp. 1. 

3.1 Results 

Results are plotted in Figure 4. Here we find again a very strong and significant (p « 
0.005) correlation between the age at which an input is learned and its naming latency. 
The correlation coefficient averaged over 10 runs is 0.668. This fits very well with known 
data. Figure 5 shows how the frequency of presentation of a given stimulus correlates with 
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Figure 5: Exp. 2 Frequency vs. SSE Figure 6: Exp. 2 AoA vs. Frequency 

naming latency. We find that the best fitting correlation is an exponential one in which 
naming latency correlates most strongly with the log of the frequency. The correlation 
coefficient averaged over 10 runs is significant (p « 0.005) at -0.730. This is a slightly 
stronger correlation than is found in the literature. 

Finally, figure 6 shows how frequency and AoA are related. Again, we find a significant (p 
< 0.005) correlation coefficient of -0.283 averaged over 10 runs. However, this is a much 
weaker correlation than is found in the literature. Performing a multiple regression with the 
dependent variable as SSE and the two explaining variables as AoA and log frequency, we 
find that both AoA and log frequency contribute significantly (p« 0.005 for both variables) 
to the regression equation. Whereas AoA correlates with SSE at 0.668 and log frequency 
correlates with SSE at -0.730, the multiple correlation coefficient averaged over 10 runs is 
0.794. AoA and log frequency each make independent contributions to naming latency. 

We were encouraged that we found both effects of frequency and AoA on SSE in our 
model, but were surprised by the small size of the correlation between the two. The naming 
literature shows a strong correlation between AoA and frequency. However, pilot work 
with a smaller network showed no frequency effect, which was due to the autoencoding 
task in a network where the patterns filled 20% of the input space (200 random patterns 
in a 10-8-10 network, with 1024 patterns possible). This suggests that autoencoding is not 
an appropriate task to model naming, and would give rise to the low correlation between 
AoA and frequency. Indeed, English spellings and their corresponding sounds are certainly 
correlated, but not completely consistent, with many exceptional mappings. Spelling-sound 
consistency has been shown to have a significant effect on naming latency (Jared, McRae, 
& Seidenberg, 1990). Object naming, another task in which AoA effects are found, is a 
completely arbitrary mapping. Our third experiment looks at the effect that consistency of 
our mapping task has on AoA and frequency effects. 

4 Experiment 3: Consistency effects 

Our model in this experiment is identical to the previous model except for two changes. 
First, to encode mappings with varying degrees of consistency, we needed to increase the 
number of hidden units to 50, resulting in a 20-50-20 architecture. Second, we found that 
some patterns would end up with one bit off, leading to a bimodal distribution of SSE's. 
We thus used cross-entropy error to ensure that all bits would be learned. 

Eleven levels of consistency were defined; from 100% consistent, or autoencoding; to 0% 
consistent, or a mapping from one random 20 bit vector to another random 20 bit vector. 
Note that in a 0% consistent mapping, since each bit as a 50% chance of being on, about 
50% of the bits will be the same by chance. Thus an intermediate level of 50% consistency 
will have on average 75% of the corresponding bits equal. 



,,, .. ,"" 

Com:rlahonStrOO!1hvs MappmgConSlSt<lOCy 

I I 

h>A a nd RMSE 
Iog fr""",ncyandRMSE­

t" (Iog flO<tJ(lncyandAoA) 

AO 60 

MaJlI'IngCon ... teooy 

.~ , .. .. 

. ", . 

AlItoencodlng 

VlIr1ableSognificanoo vsConsIstency 

""' ­lOO(hequency) 

' .L ~~L-~~~--~----~--~, oo 

Arbitrary ConSIstency A.-.oodong 

Figure 7: Exp. 3 R-values vs . Consistency Figure 8: Exp. 3 P-values vs. Consistency 

4.1 Results 

Using this scheme, ten runs at each consistency level were performed. Correlation coef­
ficients between AoA and naming latency (RMSE), log(frequency) and naming latency, 
and AoA and log(frequency) were examined. These results can be found in Figure 7. It 
is clear that AoA exhibits a strong effect on RMSE at all levels of consistency, peaking at 
a fully consistent mapping. We believe that this may be due to the weaker effect of fre­
quency when all patterns are consistent, and each pattern is supporting the same mapping. 
Frequency also shows a strong effect on RMSE at all levels of consistency, with its influ­
ence being lowest in the autoencoding task, as expected. Most interesting is the correlation 
strength between AoA and frequency across consistency levels . While we do not yet have 
a good explanation for the dip in correlation at the 80-90% level of consistency, it provides 
a possible explanation of the multiple regression data we describe next. 

Multiple regressions with the dependent variable as error and explaining variables as 
log(frequency) and AoA were performed. In Figure 8, we plot the negative log of the p­
value of AoA and log(frequency) in the regression equation over consistency levels. Most 
notable is the finding that AoA is significant at extreme levels at all levels of consistency. 
A value of 30 on this plot corresponds to a p-value of 10-30 . Significance of log fre­
quency has a more complex interaction with consistency. Log frequency does not achieve 
significance in determining SSE until the patterns are almost 40% consistent. For more 
consistent mappings, however, significance increases dramatically to a P-value of less than 
10-10 and then declines toward autoencoding. The data which may help us to explain what 
we see in Figure 8 actually lies in Figure 7. There is a relationship between log frequency 
significance and the correlation strength between AoA and log frequency. As AoA and 
frequency become less correlated, the significance of frequency increases, and vice-versa. 
Therefore, as frequency and AoA become less correlated, frequency is able to begin mak­
ing an independent contribution to the SSE of the network. Such interactions may explain 
the sometimes inconsistent findings in the literature; depending upon the task and the indi­
vidual items in the stimuli, different levels of consistency of mapping can affect the results. 
However, each of these points represent an average over a set of networks with one average 
consistency value. It is doubtful that any natural mapping, such as spelling to sound, has 
such a uniform distribution. We rectify this in the next experiment. 

5 Experiment 4: Modelling spelling-sound correspondences 

Our final experiment is an abstract simulation of learning to read, both in terms of word fre­
quency and spelling-sound consistency. Most English words are considered consistent in 
their spelling-sound relationship. This depends on whether words in their spelling "neigh­
borhood" agree with them in pronunciation, e.g., "cave," "rave," and "pave." However, a 
small but important portion of our vocabulary consists of inconsistent words, e.g., "have." 
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The reason that "have" continues to be pronounced inconsistently is because it is a very 
frequent word. Inconsistent words have the property that they are on average much more 
frequent than consistent words although there are far more consistent words by number. 

To model this we created an input corpus of 170 consistent words and 30 inconsistent 
words. Inconsistent words were arbitrarily defined as 50% consistent, or an average of 
5 bit flips in a 20 bit pattern; consistent words were modeled as 80% consistent, or an 
average of 2 bit flips per pattern. The 30 inconsistent words were presented with high 
frequencies corresponding to the odd numbered patterns (1..59) in Figure 3. The even 
numbered patterns from 2 to 60 were the consistent words. The remaining patterns were 
also consistent. This allowed us to compare consistent and inconsistent words in the same 
frequency range, controlling for frequency in a much cleaner manner than is possible in 
human subject experiments. The network is identical to the one in Experiment 3. 

5.1 Results 

We first analyzed the data for the standard consistency by frequency interaction. We la­
beled the 15 highest frequency consistent and inconsistent patterns as "high frequency" 
and the next 15 of each as the "low frequency" patterns, in order to get the same number of 
patterns in each cell, by design. The results are shown in Figure 9, and show the standard 
interaction. More interestingly, we did a post-hoc median split of the patterns based on 
their AoA, defining them as "early" or "late" in this way, and then divided them based on 
consistency. This is shown in Figure 10. An ANOVA using unequal cell size corrections 
shows a significant (p < .001) interaction between AoA and consistency. 

6 Discussion 

Although the possibility of Age of Acquisition effects in connectionist networks has been 
doubted, we found a very strong, significant, and reproducible effect of AoA on SSE, 
the variable most often used to model reaction time, in our networks. Patterns which are 
learned in earlier epochs consistently show lower final error values than their late acquired 
counterparts. In this study, we have shown that this effect is present across various learning 
tasks, network topologies, and frequencies . Informally, we have found AoA effects across 
more network variants than reported here, including different learning rates, momentum, 
stopping criterion, and frequency distributions. In fact, across all runs we conducted for 
this study, we found strong AoA effects, provided the network was able to learn its task. 
We believe that this is because AoA is an intrinsic property of connectionist networks. 

We have performed some preliminary analyses concerning which patterns are acquired 
early. Using the setup of Experiment 1, that is, autoencoded 20 bit patterns, we have found 
that the patterns that are most correlated with the other patterns in the training set tend to 



be the earliest acquired, with r2 = 0.298. (We should note that interpattern correlations are 
very small, but positive, because no bits are negative). Thus patterns that are most consis­
tent with the training set are learned earliest. We have yet to investigate how this generalizes 
to arbitrary mappings, but, given the results of Experiment 4, it makes sense to predict that 
the most frequent, most consistently mapped patterns (e.g., in the largest spelling-sound 
neighborhood) would be the earliest acquired, in the absence of other factors. 

7 Future Work 

This study used a very general network and learning task to demonstrate AoA effects in 
connectionist networks. There is therefore no reason to suspect that this effect is limited to 
words, and indeed, AoA effects have been found in face recognition. Meanwhile, we have 
not investigated the interaction of our simple model of AoA effects with staged presenta­
tion. Presumably words acquired late are fewer in number, and Ellis & Lambon-Ralph (in 
press) have shown that they must be extremely frequent to overcome their lateness. Our 
results suggest that patterns that are most consistent with earlier acquired mappings would 
also overcome their lateness. We are particularly interested in applying these ideas to a 
realistic model English reading acquisition, where actual consistency effects can be mea­
sured in the context of friend/enemy ratios in a neighborhood. Finally, we would like to 
explore whether the AoA effect is universal in connectionist networks, or if under some 
circumstances AoA effects are not observed. 
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