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Abstract 

In this paper, we propose a new particle filter based on sequential 
importance sampling. The algorithm uses a bank of unscented fil­
ters to obtain the importance proposal distribution. This proposal 
has two very "nice" properties. Firstly, it makes efficient use of 
the latest available information and, secondly, it can have heavy 
tails. As a result, we find that the algorithm outperforms stan­
dard particle filtering and other nonlinear filtering methods very 
substantially. This experimental finding is in agreement with the 
theoretical convergence proof for the algorithm. The algorithm 
also includes resampling and (possibly) Markov chain Monte Carlo 
(MCMC) steps. 

1 Introduction 

Filtering is the problem of estimating the states (parameters or hidden variables) 
of a system as a set of observations becomes available on-line. This problem is 
of paramount importance in many fields of science, engineering and finance. To 
solve it, one begins by modelling the evolution of the system and the noise in the 
measurements. The resulting models typically exhibit complex nonlinearities and 
non-Gaussian distributions, thus precluding analytical solution. 

The best known algorithm to solve the problem of non-Gaussian, nonlinear filter­
ing (filtering for short) is the extended Kalman filter (Anderson and Moore 1979). 
This filter is based upon the principle of linearising the measurements and evolu­
tion models using Taylor series expansions. The series approximations in the EKF 
algorithm can, however, lead to poor representations of the nonlinear functions and 
probability distributions of interest. As as result, this filter can diverge. 

Recently, Julier and Uhlmann (Julier and Uhlmann 1997) have introduced a filter 
founded on the intuition that it is easier to approximate a Gaussian distribution 



than it is to approximate arbitrary nonlinear functions. They named this filter 
the unscented Kalman filter (UKF) . They have shown that the UKF leads to more 
accurate results than the EKF and that in particular it generates much better 
estimates of the covariance of the states (the EKF seems to underestimate this 
quantity). The UKF has, however, the limitation that it does not apply to general 
non-Gaussian distributions. 

Another popular solution strategy for the general filtering problem is to use sequen­
tial Monte Carlo methods, also known as particle filters (PFs): see for example 
(Doucet, Godsill and Andrieu 2000, Doucet, de Freitas and Gordon 2001, Gordon, 
Salmond and Smith 1993). These methods allow for a complete representation of 
the posterior distribution of the states, so that any statistical estimates, such as the 
mean, modes, kurtosis and variance, can be easily computed. They can therefore, 
deal with any nonlinearities or distributions. 

PFs rely on importance sampling and, as a result, require the design of proposal 
distributions that can approximate the posterior distribution reasonably welL In 
general, it is hard to design such proposals. The most common strategy is to sample 
from the probabilistic model of the states evolution (transition prior). This strategy 
can, however, fail if the new measurements appear in the tail of the prior or if the 
likelihood is too peaked in comparison to the prior. This situation does indeed arise 
in several areas of engineering and finance, where one can encounter sensors that 
are very accurate (peaked likelihoods) or data that undergoes sudden changes (non­
stationarities): see for example (Pitt and Shephard 1999, Thrun 2000). To overcome 
this problem, several techniques based on linearisation have been proposed in the 
literature (de Freitas 1999, de Freitas, Niranjan, Gee and Doucet 2000, Doucet et aL 
2000, Pitt and Shephard 1999). For example, in (de Freitas et aL 2000), the EKF 
Gaussian approximation is used as the proposal distribution for a PF. In this paper, 
we follow the same approach, but replace the EKF proposal by a UKF proposal. The 
resulting filter should perform better not only because the UKF is more accurate, 
but because it also allows one to control the rate at which the tails of the proposal 
distribution go to zero. It becomes thus possible to adopt heavier tailed distributions 
as proposals and, consequently, obtain better importance samplers (Gelman, Carlin, 
Stern and Rubin 1995). Readers are encouraged to consult our technical report for 
further results and implementation details (van der Merwe, Doucet, de Freitas and 
Wan 2000)1. 

2 Dynamic State Space Model 

We apply our algorithm to general state space models consisting of a transition 
equation p(Xt IXt-d and a measurement equation p(Yt IXt). That is, the states follow 
a Markov process and the observations are assumed to be independent given the 
states. For example, if we are interested in nonlinear, non-Gaussian regression, the 
model can be expressed as follows 

Xt f(Xt-1, Vt-1) 

Yt = h(ut,xt,nt) 

where Ut E Rnu denotes the input data at time t, Xt E Rnz denotes the states (or 
parameters) of the model, Yt E Rny the observations, Vt E Rnv the process noise 
and nt E Rnn the measurement noise. The mappings f : Rnz x Rnv r-+ Rnz and 
h : (Rnz x Rnu) x Rnn r-+ Rny represent the deterministic process and measurement 
models. To complete the specification ofthe model, the prior distribution (at t = 0) 

lThe TR and software are available at http://www.cs.berkeley.edurjfgf . 



is denoted by p(xo). Our goal will be to approximate the posterior distribution 
p(xo:tIYl:t) and one of its marginals, the filtering density p(XtIYl:t) , where Yl:t = 
{Yl, Y2, ... ,yd· By computing the filtering density recursively, we do not need to 
keep track of the complete history of the states. 

3 Particle Filtering 

Particle filters allow us to approximate the posterior distribution P (xo:t I Yl:t) using 

a set of N weighted samples (particles) {x~~L i = 1, ... , N}, which are drawn from 

an importance proposal distribution q(xo:tIYl:t). These samples are propagated 
in time as shown in Figure 1. In doing so, it becomes possible to map intractable 
integration problems (such as computing expectations and marginal distributions) 
to easy summations. This is done in a rigorous setting that ensures convergence 
according to the strong law of large numbers 

where ~ denotes almost sure convergence and it : IRn~ -t IRn't is some func­
tion of interest. For example, it could be the conditional mean, in which case 
it (xo:t) = XO:t, or the conditional covariance of Xt with it (xo:t) = XtX~ 

i= 1, ... ,N= 10 particles 
o 0 0 0 o 000 0 

, " 

it tf' ! i 
1 h lh j 1 

•• 

{x(i) w(i)} 
t· 1' t· 1 

Figure 1: In this example, a particle filter starts at time t - 1 with an unweighted 
measure {X~~l' N-1 }, which provides an approximation of p(Xt-lIYl:t-2). For each 
particle we compute the importance weights using the information at time t - 1. 
This results in the weighted measure {x~~l!W~~l}' which yields an approximation 
p(xt-lIYl:t-l). Subsequently, a resampling step selects only the "fittest" particles 
to obtain the unweighted measure {X~~l' N-1 }, which is still an approximation of 
p(Xt-lIYl:t-l) . Finally, the sampling (prediction) step introduces variety, resulting 
in the measure {x~i), N-l}. 



Fp(x,lyu) [Xt]I8:'p(x,lyu) [Xt]. A Generic PF algorithm involves the following steps. 

Generic PF 

1. Sequential importance sampling step 

• For i = 1, ... ,N. sample x~il '" q(XtIX~~L1,Yl:t) and update the trajectories 
-til A. (-(il (il ) 
xo:t - x t ,xO:t-1 

• For i = 1, ... ,N. evaluate the importance weights up to a normalizing constant: 

( -(il I ) (il _ P xo:t Yl:t 
w t - (-(i l I (il ) (-(i l I ) q x t XO:t - 1' Y1:t P XO:t - 1 Y1 :t-1 

F . 1 N I· h . h -til _ (,l [",N (Jl] -1 • or ~ = , ... , . norma Ize t e welg ts: Wt - Wt L.JJ=1 Wt 

2. Selection step 

• Multiply/suppress samples (x~i~) with high/low importance weights w~il. 
respectively. to obtain N random samples (x~i~) approximately distributed ac­

cording to p(X~~~IY1:t). 
3. MCMC step 

• Apply a Markov transition kernel with invariant distribution given by p(x~~~IYl:t) 
to obtain (x~i ~). 

• 

In the above algorithm, we can restrict ourselves to importance functions of the 
t 

form q(xo:tIYl:t) = q(xo) II q(xkIY1:k,X1:k-I) to obtain a recursive formula to 
k=1 

evaluate the importance weights 

P (Yt I YI:t-l, xo:t) P (Xt I Xt-I) 
Wt CX 

q (Xt I Yl:t, Xl:t-I) 

There are infinitely many possible choices for q (xo:tl Yl:t), the only condition being 
that its support must include that of p(xo:tIYl:t). The simplest choice is to just 
sample from the prior, P (Xt I Xt- I), in which case the importance weight is equal to 
the likelihood, P (Ytl YI:t-l, xO:t). This is the most widely used distribution, since 
it is simple to compute, but it can be inefficient, since it ignores the most recent 
evidence, Yt. 

The selection (resampling) step is used to eliminate the particles having low impor­
tance weights and to multiply particles having high importance weights (Gordon 
et al. 1993). This is done by mapping the weighted measure {x~i) ,w~i)} to an un­
weighted measure {x~i), N-I } that provides an approximation of p(xtIYl:t). After 
the selection scheme at time t, we obtain N particles distributed marginally ap­
proximately according to p(xo:tIYl:t). One can, therefore, apply a Markov kernel 
(for example, a Metropolis or Gibbs kernel) to each particle and the resulting distri­
bution will still be p(xo:t IYl:t). This step usually allows us to obtain better results 
and to treat more complex models (de Freitas 1999). 



4 The Unscented Particle Filter 

As mentioned earlier, using the transition prior as proposal distribution can be 
inefficient. As illustrated in Figure 2, if we fail to use the latest available informa­
tion to propose new values for the states, only a few particles might survive. It 
is therefore of paramount importance to move the particles towards the regions of 
high likelihood. To achieve this, we propose to use the unscented filter as proposal 
distribution. This simply requires that we propagate the sufficient statistics of the 
UKF for each particle. For exact details, please refer to our technical report (van 
der Merwe et al. 2000). 

Prior Likelihood 

• • ••••••• • • • • • • 

Figure 2: The UKF proposal distribution allows us to move the samples in the prior 
to regions of high likelihood. This is of paramount importance if the likelihood 
happens to lie in one of the tails of the prior distribution, or if it is too narrow (low 
measurement error). 

5 Theoretical Convergence 

Let B (l~n) be the space of bounded, Borel measurable functions on ~n. We denote 
Ilfll ~ sup If (x) I. The following theorem is a straightforward extension of previous 

xERn 

results in (Crisan and Doucet 2000). 

Theorem 1 If the importance weight 

P (Yt I Xt) P (Xt I Xt-l) 
Wt CX 

q (Xt I XO:t-l, Yl:t) 
(1) 

is upper bounded for any (Xt-l,yt), then, for all t ~ 0, there exists Ct independent 
of N, such that for any ft E B (~n~x(t+l)) 

(2) 

The expectation in equation 2 is with respect to the randomness introduced by the 
particle filtering algorithm. This convergence result shows that, under very lose 
assumptions, convergence of the (unscented) particle filter is ensured and that the 
convergence rate of the method is independent of the dimension of the state-space. 
The only crucial assumption is to ensure that Wt is upper bounded, that is that the 
proposal distribution q (Xt I XO:t-l, Yl:t) has heavier tails than P (Yt I Xt) P (Xtl Xt-t). 
Considering this theoretical result, it is not surprising that the UKF (which has 
heavier tails than the EKF) can yield better estimates. 



6 Demonstration 

For this experiment, a time-series is generated by the following process model Xt+! = 
1 + sin(w7rt) + ¢Xt + Vt, where Vt is a Gamma(3,2) random variable modeling the 
process noise, and W = 4e - 2 and ¢ = 0.5 are scalar parameters. A non-stationary 
observation model, 

t S 30 
t> 30 

is used. The observation noise, nt, is drawn from a zero-mean Gaussian distribution. 
Given only the noisy observations, Yt, a few different filters were used to estimate 
the underlying clean state sequence Xt for t = 1 ... 60. The experiment was repeated 
100 times with random re-initialization for each run. All of the particle filters used 
200 particles. Table 1 summarizes the performance of the different filters. The 

Algorithm MSE 
mean var 

Extended Kalman Filter (EKFl 0.374 0.015 
Unscented Kalman Filter (UKF) 0.280 0.012 
Particle Filter : generic 0.424 0.053 
Particle Filter: MCMC move step 0.417 0.055 
Particle Filter : EKF proposal 0.310 0.016 
Particle Filter: EKF proposal and MCMC move step 0.307 0.015 
Particle Filter : UKF proposal (" Unscented Particle Filter") 0.070 0.006 
Particle Filter: UKF proposal and MCMC move step 0.074 0.008 

Table 1: Mean and variance of the MSE calculated over 100 independent runs. 

table shows the means and variances of the mean-square-error (MSE) of the state 
estimates. Note that MCMC could improve results in other situations. Figure 3 
compares the estimates generated from a single run of the different particle filters. 
The superior performance of the unscented particle filter is clearly evident. Figure 

'O~--~'O----~2~O----~30-----4~O----~W----~ro· 
Time 

Figure 3: Plot of the state estimates generated by different filters. 

4 shows the estimates of the state covariance generated by a stand-alone EKF and 
UKF for this problem. Notice how the EKF's estimates are consistently smaller than 
those generated by the UKF. This property makes the UKF better suited than the 
EKF for proposal distribution generation within the particle filter framework. 



Estimates of state covariance 
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- UKF 
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Figure 4: EKF and UKF estimates of state covariance. 

7 Conclusions 

We proposed a new particle filter that uses unscented filters as proposal distribu­
tions. The convergence proof and empirical evidence, clearly, demonstrate that this 
algorithm can lead to substantial improvements over other nonlinear filtering algo­
rithms. The algorithm is well suited for engineering applications, when the sensors 
are very accurate but nonlinear, and financial time series, where outliers and heavy 
tailed distributions play a significant role in the analysis of the data. For further 
details and experiments, please refer to our report (van der Merwe et al. 2000). 
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