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Abstract 

We present a new multiple-instance (MI) learning technique (EM­
DD) that combines EM with the diverse density (DD) algorithm. 
EM-DD is a general-purpose MI algorithm that can be applied with 
boolean or real-value labels and makes real-value predictions. On 
the boolean Musk benchmarks, the EM-DD algorithm without any 
tuning significantly outperforms all previous algorithms. EM-DD 
is relatively insensitive to the number of relevant attributes in the 
data set and scales up well to large bag sizes. Furthermore, EM­
DD provides a new framework for MI learning, in which the MI 
problem is converted to a single-instance setting by using EM to 
estimate the instance responsible for the label of the bag. 

1 Introduction 
The multiple-instance (MI) learning model has received much attention. In this 
model, each training example is a set (or bag) of instances along with a single 
label equal to the maximum label among all instances in the bag. The individual 
instances within the bag are not given labels. The goal is to learn to accurately 
predict the label of previously unseen bags. Standard supervised learning can be 
viewed as a special case of MI learning where each bag holds a single instance. The 
MI learning model was originally motivated by the drug activity prediction problem 
where each instance is a possible conformation (or shape) of a molecule and each 
bag contains all likely low-energy conformations for the molecule. A molecule is 
active if it binds strongly to the target protein in at least one of its conformations 
and is inactive if no conformation binds to the protein. The problem is to predict 
the label (active or inactive) of molecules based on their conformations. 

The MI learning model was first formalized by Dietterich et al. in their seminal 
paper [4] in which they developed MI algorithms for learning axis-parallel rectangles 
(APRs) and they also provided two benchmark "Musk" data sets. Following this 
work, there has been a significant amount of research directed towards the devel­
opment of MI algorithms using different learning models [2 ,5,6,9,12]. Maron and 



Raton [7] applied the multiple-instance model to the task of recognizing a person 
from a series of images that are labeled positive if they contain the person and 
negative otherwise. The same technique was used to learn descriptions of natural 
scene images (such as a waterfall) and to retrieve similar images from a large im­
age database using the learned concept [7]. More recently, Ruffo [11] has used this 
model for data mining applications. 

While the musk data sets have boolean labels , algorithms that can handle real­
value labels are often desirable in real-world applications. For example, the binding 
affinity between a molecule and receptor is quantitative, and hence a real-value 
classification of binding strength is preferable to a binary one. Most prior research 
on MI learning is restricted to concept learning (i.e. boolean labels). Recently, MI 
learning with real-value labels has been performed using extensions of the diverse 
density (DD) and k-NN algorithms [1] and using MI regression [10]. 

In this paper , we present a general-purpose MI learning technique (EM-DD) that 
combines EM [3] with the extended DD [1] algorithm. The algorithm is applied 
to both boolean and real-value labeled data and the results are compared with 
corresponding MI learning algorithms from previous work. In addition, the effects 
of the number of instances per bag and the number of relevant features on the 
performance of EM-DD algorithm are also evaluated using artificial data sets . A 
second contribution of this work is a new general framework for MI learning of 
converting the MI problem to a single-instance setting using EM. A very similar 
approach was also used by Ray and Page [10]. 

2 Background 

Dietterich et al. [4], presented three algorithms for learning APRs in the MI model. 
Their best performing algorithm (iterated-discrim) , starts with a point in the feature 
space and "grows" a box with the goal of finding the smallest box that covers at 
least one instance from each positive bag and no instances from any negative bag. 
The resulting box was then expanded (via a statistical technique) to get better 
results. However, the test data from Muskl was used to tune the parameters of the 
algorithm. These parameters are then used for Muskl and Musk2. 

Auer [2] presented an algorithm, MULTINST, that learns using simple statistics to 
find the halfspaces defining the boundaries of the target APR and hence avoids some 
potentially hard computational problems that were required by the heuristics used 
in the iterated-discrim algorithm. More recently, Wang and Zucker [11] proposed a 
lazy learning approach by applying two variant of the k nearest neighbor algorithm 
(k-NN) which they refer to as citation-kNN and Bayesian k-NN. Ramon and De 
Raedt [9] developed a MI neural network algorithm. 

Our work builds heavily upon the Diverse Density (DD) algorithm of Maron and 
Lozano-Perez [5,6]. When describing the shape of a molecule by n features , one can 
view each conformation of the molecule as a point in a n-dimensional feature space. 
The diverse density at a point p in the feature space is a probabilistic measure of 
both how many different positive bags have an instance near p, and how far the 
negative instances are from p. Intuitively, the diversity density of a hypothesis h is 
just the likelihood (with respect to the data) that h is the target. A high diverse 
density indicates a good candidate for a "true" concept. 

We now formally define the general MI problem (with boolean or real-value la-



bels) and DD likelihood measurement originally defined in [6] and extended to 
real-value labels in [1]. Let D be the labeled data which consists of a set of m 
bags B = {B1, ... , B m } and labels L = {l\, ... ,£m }, i.e., D = {< B 1,£l >, ... ,< 
Bm, £m >}. Let bag Bi = {Bil " '" B ij , ... Bin} where Bij denote the lh in-
stance in bag i. Assume the labels of the instances in Bi are £i 1, ... , £ij, ... , £in . 
For boolean labels, £i = £i1 V £i2 V ... V £in, and for real-value labels, £i = 
max{ £il, £i2, ... , £in}. The diverse density of hypothesized target point h is de-

fi d (h) (h I ) Pr(D I h) Pr(h) Pr(B , L I h) Pr(h) A . 
ne as D D = Pr D = () = (). ssummg a 

Pr D Pr B , L 
uniform prior on the hypothesis space and independence of < B i , £i > pairs given 
h , using Bayes' rule, the maximum likelihood hypothesis , hDD , is defined as: 

n n 

arg maxPr(D I h) = arg m ax IT Pr(Bi , £i I h) = arg min I) -log Pr(£i I h , B i )) 
hEH hEH i=l hEH i=l 

where Label (Bi I h) is the label that would be given to B i if h were the correct 
hypothesis. As in the extended DD algorithm [1], Pr(£i I h, Bi) is estimated as 
l-I£i - Label (Bi I h) I in [1]. When the labels are boolean (0 or 1) , this formulation 
is exactly the most-likely-cause estimator used in the original DD algorithm [5]. For 
most applications the influence each feature has on the label varies greatly. This 
variation is modeled in the DD algorithm by associating with each attribute an 
(unknown) scale factor . Hence the target concept really consists of two values per 
dimension , the ideal attribute value and the scale value. Using the assumption that 
binding strength drops exponentially as the similarity between the conformation 
to the ideal shape increases , the following generative model was introduced by 
Maron and Lozano-Perez [6] for estimating the label of bag B i for hypothesis h = 
{h 1 , ... , hn , Sl , ... , sn} : 

Label(Bi I h) =max{ exP[- t (Sd(Bijd - hd)) 2]} 
J d=l 

(1) 

where Sd is a scale factor indicating the importance of feature d, h d is the feature 
value for dimension d, and B ijd is the feature value of instance B ij on dimension d. 
Let NLDD(h , D) = 2::7=1 (-log Pr(£i I h , B i )) , where NLDD denote the negative 
logarithm of DD. The DD algorithm [6] uses a two-step gradient descent search to 
find a value of h that minimizes NLDD (and hence maximizes DD). 

Ray and Page [10] developed multiple-instance regression algorithm which can also 
handle real-value labeled data. They assumed an underlying linear model for the 
hypothesis and applied the algorithm to some artificial data. Similar to the current 
work, they also used EM to select one instance from each bag so multiple regression 
can be applied to MI learning. 

3 Our algorithm: EM-DD 
We now describe EM-DD and compare it with the original DD algorithm. One 
reason why MI learning is so difficult is the ambiguity caused by not knowing 
which instance is the important one. The basic idea behind EM-DD is to view 
the knowledge of which instance corresponds to the label of the bag as a missing 
attribute which can be estimated using EM approach in a way similar to how EM 
is used in the MI regression [10]. EM-DD starts with some initial guess of a target 
point h obtained in the standard way by trying points from positive bags, then 
repeatedly performs the following two steps that combines EM with DD to search 
for the maximum likelihood hypothesis. In the first step (E-step) , the current 



hypothesis h is used to pick one instance from each bag which is most likely (given 
our generative model) to be the one responsible for the label given to the bag. In 
the second step (M -step), we use the two-step gradient ascent search (quasi-newton 
search dfpmin in [8]) of the standard DD algorithm to find a new hi that maximizes 
DD(h). Once this maximization step is completed , we reset the proposed target 
h to hi and return to the first step until the algorithm converges. Pseudo-code for 
EM-DD is given in Figure 1. 

We now briefly provide intuition as to why EM-DD improves both the accuracy and 
computation time of the DD algorithm. Again, the basic approach of DD is to use 
a gradient search to find a value of h that maximizes DD(h). In every search step , 
the DD algorithm uses all points in each bag and hence the maximum that occurs 
in Equation (1) must be computed. The prior diverse density algorithms [1,5,6,7] 
used a softmax approximation for the maximum (so that it will be differentiable), 
which dramatically increases the computation complexity and introduces additional 
error based on the parameter selected in softmax. In comparison, EM-DD converts 
the multiple-instance data to single-instance data by removing all but one point per 
bag in the E -step, which greatly simplifies the search step since the maximum that 
occurs in Equation (1) is removed in the E -step. The removal of softmax in EM­
DD greatly decreases the computation time. In addition, we believe that EM-DD 
helps avoid getting caught in local minimum since it makes major changes in the 
hypothesis when it switches which point is selected from a bag. 

We now provide a sketch of the proof of convergence of EM-DD. Note that at 
each iteration t , given a set of instances selected in the E-step, the M-step will 
find a unique hypothesis (h t ) and corresponding DD (ddt). At iteration t + 1, if 
ddt+1 ::; ddt , the algorithm will terminate. Otherwise, ddt+1 > ddt , which means 
that a different set of instances are selected. For the iteration to continue, the DD 
will decrease monotonically and the set of instances selected can not repeat. Since 
there are only finite number of sets to instances that can be selected at the E-step , 
the algorithm will terminate after a finite number of iterations. 

However, there is no guarantee on the convergence rate of EM algorithms. We 
found that the NLDD(h , D) usually decreases dramatically after the first several 
iterations and then begins to flatten out. From empirical tests we found that it is 
often beneficial to allow NLDD to increase slightly to escape a local minima and thus 
we used the less restrictive termination condition: Idd1 - ddo I < 0.01 . ddo or the 
number of iterations is greater than 10. This modification reduces the training time 
while gaining comparable results. However, for this modification no convergence 
proof can be given without restricting the number of iterations. 

4 Experimental results 

In this section we summarize our experimental results. We begin by reporting our 
results for the two musk benchmark data sets provided by Dietterich et al. [4]. 
These data sets contain 166 feature vectors describing the surface for low-energy 
conformations of 92 molecules for Muskl and 102 molecules for Musk2 where roughly 
half of the molecules are known to smell musky and the remainder are not. The 
Musk1 data set is smaller both in having fewer bags (i. e molecules) and many fewer 
instances per bag (an average of 6.0 for Musk1 versus 64.7 for Musk2). Prior to 
this work, the highly-tuned iterated-discrim algorithm of Dietterich et al. still gave 
the best performance on both Musk1 and Musk2. Maron and Lozano-Perez [6] 



Main(k , D) 
partition D = {D1 ' D2, ... , D 10 }; 111 O-fold cross validation 
for (i = l ;i:::; 10 ;i++) 

Dt = D - Di ; IIDt training data , Di validation data 
pick k random positive bags B 1 , ... , B k from Dt ; 

let Ho be the union of all instances from selected bags; 
for every instance I j E H 0 

hj = EM-DD (Ij, Dt ); 
ei = mino:<;:j:<;:IIHoll{error(hj,Di)}; 
return avg(e1,e2, ... , e1o) ; 

EM-DD(I , Dt ) 
Let h = {h1' ... , hn , Sl, ... , sn}; Ilinitial hypothesis 
For each dimension d = 1, ... , n 

hd = Id; Sd = 0.1 ; 
nlddo = +00; nldd1 = NLDD(h, Dt); 
while (nldd1 < nlddo) 

for each bag Bi E Dt liE-step 
pi = argmaxBijEBi Pr(Bij E h); 

hi = argmaXhEH flP r(fi I h ,pi); 11M-step 
nlddo = nldd1; nldd1 = NLDD(hl,Dt); h = hi; 

return h; 

Figure 1: Pseudo-code for EM-DD where k indicates the number of different starting 
bags used, Pr(Bij E h) = exp[- I:~=1 (sd(Bijd - hd))2]. Pr(fi I h ,p,!) is calculate as 
either 1-lfi - Pr(pi E h) I (linear model) or exp[-( f i - Pr(pi E h) )2] (Gaussian-like 
model) , where Pr(pi E h) = maxBijEBi Pr(Bij E h). 

summarize the generally held belief that "The performance reported for iterated­
discrim APR involves choosing parameters to maximize the test set performance 
and so probably represents an upper bound for accuracy on this (Musk1) data set." 

EM-DD without tuning outperforms all previous algorithms. To be consistent with 
the way in which past results have been reported for the musk benchmarks we 
report the average accuracy of la-fold cross-validation (which is the value returned 
by Main in Figure l. EM-DD obtains an average accuracy of 96.8% on Musk1 and 
96.0% on Musk2. A summary of the performance of different algorithms on the 
Musk1 and Musk2 data sets is given in Table l. In addition , for both data sets , 
there are no false negative errors using EM-DD , which is important for the drug 
discovery application since the final hypothesis would be used to filter potential 
drugs and a false negative error means that a potential good drug molecule would 
not be tested and thus it is good to minimize such errors. As compared to the 
standard DD algorithm , EM-DD only used three random bags for Muskl and two 
random bags for Musk2 (versus all positive bags used in DD) as the starting point 
of the algorithm. Also, unlike the results reported in [6] in which the threshold is 
tuned based on leave-one-out cross validation, for our reported results the threshold 
value (of 0.5) is not tuned. More importantly, EM-DD runs over 10 times faster 
than DD on Musk1 and over 100 times faster when applied to Musk2. 



Table 1: Comparison of performance on Musk1 and Musk2 data sets as measured 
by giving the average accuracy across 10 runs using 10-fold cross validation. 

Algorithm 

EM-DD 
Iterated-discrim [4] 
Citation-kNN [11] 
Bayesian-kNN [11] 
Diverse density [6] 
Multi-instance neural network [9] 
Multinst [2] 

Musk1 
accuracy 
96.8% 
92.4% 
92.4% 
90.2% 
88.9% 
88.0% 
76.7% 

Musk 2 
accuracy 
96.0% 
89.2% 
86.3% 
82.4% 
82.5% 
82.0% 
84.0% 

In addition to its superior performance on the musk data sets, EM-DD can handle 
real-value labeled data and produces real-value predictions. We present results 
using one real data set (Affinity) 1 that has real-value labels and several artificial 
data sets generated using the technique of our earlier work [1]. For these data sets, 
we used as our starting points the points from the bag with the highest DD value. 
The result are shown in Table 2. The Affinity data set has 283 features and 139 
bags with an average of 32.5 points per bag. Only 29 bags have labels that were 
high enough to be considered as "positive." Using the Gaussian-like version of our 
generative model we obtained a squared loss of 0.0185 and with the linear model 
we performed slightly better with a loss of 0.0164. In contrast using the standard 
diverse density algorithm the loss was 0.042l. EM-DD also gained much better 
performance than DD on two artificial data (160.166.1a-S and 80.166.1a-S) where 
both algorithms were used2 . The best result on Affinity data was obtained using a 
version of citation-kNN [1] that works with real-value data with the loss as 0.0124. 
We think that the affinity data set is well-suited for a nearest neighbor approach in 
that all of the negative bags have labels between 0.34 and 0.42 and so the actual 
predictions for the negative bags are better with citation-kNN. 

To study the sensitivity of EM-DD to the number ofrelevant attributes and the size 
of the bags, tests were performed on artificial data sets with different number of 
relevant features and bag sizes. As shown in Table 2, similar to the DD algorithm [1], 
the performance of EM-DD degrades as the number of relevant features decreases. 
This behavior is expected since all scale factors are initialized to the same value 
and when most of the features are relevant less adjustment is needed and hence the 
algorithm is more likely to succeed. In comparison to DD , EM-DD is more robust 
against the change of the number of relevant features. For example, as shown in 
Figure 2, when the number of relevant features is 160 out of 166, both EM-DD and 
DD algorithms perform well with good correlation between the actual labels and 
predicted labels. However, when the number of relevant features decreases to 80 , 
almost no correlation between the actual and predicted labels is found using DD , 
while EM-DD can still provide good predictions on the labels. 

Intuitively, as the size of bags increases, more ambiguity is introduced to the data 
and the performance of algorithms is expected to go down. However , somewhat 

] Jonathan Greene from CombiChem provided us with the Affinity data set. However, 
due to the proprietary nature of it we cannot make it publicly available. 

2See Amar et al. [1] for a description of these two data sets. 



Table 2: Performance on data with real-value labels measured as squared loss. 

Data set # reI. features #pts per bag EM-DD DD [1] 

Affinity 32.5 .0164 .0421 
160.166.1a-S 160 4 .0014 .0052 
160.166.1b-S 160 15 .0013 
160.166.1c-S 160 25 .0012 
80.166.1a-S 80 4 .0029 .1116 
80.166.1b-S 80 15 .0023 
80.166.1c-S 80 25 .0022 
40.166.1a-S 40 4 .0038 
40.166.1b-S 40 15 .0026 
40.166.1c-S 40 25 .0037 

surprisingly, the performance of EM-DD actually improves as the number of ex­
amples per bag increases . We believe that this is partly due to the fact that with 
few points per bag the chance that a bad starting point has the highest diverse 
density is much higher than when the bags are large. In addition, in contrast to the 
standard diverse density algorithm , the overall time complexity of EM-DD does not 
go up as the size of the bags increased , since after the instance selection (E-step) , 
the time complexities of the dominant M-step are essentially the same for data sets 
with different bag sizes. The fact that EM-DD scales up well to large bag sizes 
in both performance and running time is very important for real drug-discovery 
applications in which the bags can be quite large. 

5 Future directions 
There are many avenues for future work. We believe that EM-DD can be refined to 
obtain better performance by finding alternate ways to select the initial hypothesis 
and scale factors. One option would be to use the result from a different learning 
algorithm as the starting point then use EM-DD to refine the hypothesis. We are 
currently studying the application of the EM-DD algorithm to other domains such 
as content-based image retrieval. Since our algorithm is based on the diverse density 
likelihood measurement we believe that it will perform well on all applications in 
which the standard diverse density algorithm has worked well. In addition , EM-DD 
and MI regression [10] presented a framework to convert the multiple-instance data 
to single-instance data, where supervised learning algorithms can be applied. We 
are currently working on using this general methodology to develop new MI learning 
techniques based on supervised learning algorithms and EM. 
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