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Abstract

Recent algorithms for sparse coding and independent component analy-
sis (ICA) have demonstrated how localized features can be learned from
natural images. However, these approaches do not take image transfor-
mations into account. As a result, they produce image codes that are
redundant because the same feature is learned at multiple locations. We
describe an algorithm for sparse coding based on a bilinear generative
model of images. By explicitly modeling the interaction between im-
age features and their transformations, the bilinear approach helps reduce
redundancy in the image code and provides a basis for transformation-
invariant vision. We present results demonstrating bilinear sparse coding
of natural images. We also explore an extension of the model that can
capture spatial relationships between the independent features of an ob-
ject, thereby providing a new framework for parts-based object recogni-
tion.

1 Introduction

Algorithms for redundancy reduction and efficient coding have been the subject of con-
siderable attention in recent years [6, 3, 4, 7, 9, 5, 11]. Although the basic ideas can be
traced to the early work of Attneave [1] and Barlow [2], recent techniques such as indepen-
dent component analysis (ICA) and sparse coding have helped formalize these ideas and
have demonstrated the feasibility of efficient coding through redundancy reduction. These
techniques produce an efficient code by attempting to minimize the dependencies between
elements of the code by using appropriate constraints.

One of the most successful applications of ICA and sparse coding has been in the area of
image coding. Olshausen and Field showed that sparse coding of natural images produces
localized, oriented basis filters that resemble the receptive fields of simple cells in primary
visual cortex [6, 7]. Bell and Sejnowski obtained similar results using their algorithm
for ICA [3]. However, these approaches do not take image transformations into account.
As a result, the same oriented feature is often learned at different locations, yielding a
redundant code. Moreover, the presence of the same feature at multiple locations prevents
more complex features from being learned and leads to a combinatorial explosion when
one attempts to scale the approach to large image patches or hierarchical networks.

In this paper, we propose an approach to sparse coding that explicitly models the interac-



tion between image features and their transformations. A bilinear generative model is used
to learn both the independent features in an image as well as their transformations. Our
approach extends Tenenbaum and Freeman’s work on bilinear models for learning con-
tent and style [12] by casting the problem within probabilistic sparse coding framework.
Thus, whereas prior work on bilinear models used global decomposition methods such as
SVD, the approach presented here emphasizes the extraction of local features by remov-
ing higher-order redundancies through sparseness constraints. We show that for natural
images, this approach produces localized, oriented filters that can be translated by differ-
ent amounts to account for image features at arbitrary locations. Our results demonstrate
how an image can be factored into a set of basic local features and their transformations,
providing a basis for transformation-invariant vision. We conclude by discussing how the
approach can be extended to allow parts-based object recognition, wherein an object is
modeled as a collection of local features (or “parts”) and their relative transformations.

2 Bilinear Generative Models

We begin by considering the standard linear generative model used in algorithms for ICA
and sparse coding [3, 7, 9]: ��� �� � ����	
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where � is a 
 -dimensional input vector (e.g. an image), 	
�

is a 
 -dimensional basis vector
and


��
is its scalar coefficient. Given the linear generative model above, the goal of ICA is

to learn the basis vectors 	
�

such that the


 �
are as independent as possible, while the goal

in sparse coding is to make the distribution of


 �
highly kurtotic given Equation 1.

The linear generative model in Equation 1 can be extended to the bilinear case by using
two independent sets of coefficients


 �
and � � (or equivalently, two vectors � and � ) [12]:������� ������� � �� � ��� ��� ��� 	
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The coefficients


 �
and � � jointly modulate a set of basis vectors 	

� � to produce an input
vector � . For the present study, the coefficient


��
can be regarded as encoding the presence

of object feature � in the image while the � � values determine the transformation present in
the image. In the terminology of Tenenbaum and Freeman [12], � describes the “content”
of the image while � encodes its “style.”

Equation 2 can also be expressed as a linear equation in � for a fixed � :������� ���! � �� � ���
"# ��� ���$	
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Likewise, for a fixed � , one obtains a linear equation in � . Indeed this is the definition
of bilinear: given one fixed factor, the model is linear with respect to the other factor. The
power of bilinear models stems from the rich non-linear interactions that can be represented
by varying both � and � simultaneously.

3 Learning Sparse Bilinear Models

3.1 Learning Bilinear Models

Our goal is to learn from image data an appropriate set of basis vectors 	
� � that effectively

describe the interactions between the feature vector � and the transformation vector � .



A commonly used approach in unsupervised learning is to minimize the sum of squared
pixel-wise errors over all images:
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where �	��
���� denotes the 
 � norm of a vector. A standard approach to minimizing such
a function is to use gradient descent and alternate between minimization with respect to� ��� � � and minimization with respect to 	

� � . Unfortunately, the optimization problem as
stated is underconstrained. The function

� � has many local minima and results from our
simulations indicate that convergence is difficult in many cases. There are many different
ways to represent an image, making it difficult for the method to converge to a basis set
that can generalize effectively.

A related approach is presented by Tenenbaum and Freeman [12]. Rather than using gradi-
ent descent, their method estimates the parameters directly by computing the singular value
decomposition (SVD) of a matrix � containing input data corresponding to each content
class � in every style � . Their approach can be regarded as an extension of methods based
on principal component analysis (PCA) applied to the bilinear case. The SVD approach
avoids the difficulties of convergence that plague the gradient descent method and is much
faster in practice. Unfortunately, the learned features tend to be global and non-localized
similar to those obtained from PCA-based methods based on second-order statistics. As a
result, the method is unsuitable for the problem of learning local features of objects and
their transformations.

The underconstrained nature of the problem can be remedied by imposing constraints on �
and � . In particular, we could cast the problem within a probabilistic framework and im-
pose specific prior distributions on � and � with higher probabilities for values that achieve
certain desirable properties. We focus here on the class of sparse prior distributions for sev-
eral reasons: (a) by forcing most of the coefficients to be zero for any given input, sparse
priors minimize redundancy and encourage statistical independence between the various

 �

and between the various � � [7], (b) there is growing evidence for sparse representations
in the brain – the distribution of neural responses in visual cortical areas is highly kurtotic
i.e. the cell exhibits little activity for most inputs but responds vigorously for a few inputs,
causing a distribution with a high peak near zero and long tails, (c) previous approaches
based on sparseness constraints have obtained encouraging results [7], and (d) enforcing
sparseness on the


 �
encourages the parts and local features shared across objects to be

learned while imposing sparseness on the � � allows object transformations to be explained
in terms of a small set of basic transformations.

3.2 Bilinear Sparse Coding

We assume the following priors for


 �
and � � :

� � 
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where
� �

and
� !

are normalization constants, $ and % are parameters that control the
degree of sparseness, and & is a “sparseness function.” For this study, we used & � ' � �(	)+* � ��, ' � � .



Within a probabilistic framework, the squared error function
� � summed over all images

can be interpreted as representing the negative log likelihood of the data given the parame-
ters: � (	)+* � � � � 	

� � �!� ����� (see, for example, [7]). The priors
� � 
 � � and

� � � � � can be used
to marginalize this likelihood to obtain the new likelihood function: 
 � 	

� � � � � � � � 	
� � � .

The goal then is to find the 	
� � that maximize 
 , or equivalently, minimize the negative

log of 
 . Under certain reasonable assumptions (discussed in [7]), this is equivalent to
minimizing the following optimization function over all input images:
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Gradient descent can be used to derive update rules for the components



� and ��� of the

feature vector � and transformation vector � respectively for any image � , assuming a fixed
basis 	
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Given a training set of inputs ��� , the values for � and � for each image after convergence
can be used to update the basis set 	

� � in batch mode according to:

� 	 � ���� � � ��
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As suggested by Olshausen and Field [7], in order to keep the basis vectors from growing
without bound, we adapted the 
 � norm of each basis vector in such a way that the variances
of the


 �
and � � were maintained at a fixed desired level.

4 Results

4.1 Training Paradigm

We tested the algorithms for bilinear sparse coding on natural image data. The natural
images we used are distributed by Olshausen and Field [7], along with the code for their
algorithm. The training set of images consisted of ����� ��� patches randomly extracted from
ten � � � � � � � source images. The images are pre-whitened to equalize large variances in
frequency, and thus speed convergence. We choose to use a complete basis where � �
���
� and we let � be at least as large as the number of transformations (including the no-
transformation case). The sparseness parameters $ and % were set to

��� �
and � � � . In

order to assist convergence all learning occurs in batch mode, where the batch consisted
of � � ����� image patches. The step size � for gradient descent using Equation 11 was
set to � � � � . The transformations were chosen to be 2D translations in the range � � �"!#��$
pixels in both the axes. The style/content separation was enforced by learning a single �
vector to describe an image patch regardless its translation, and likewise a single � vector
to describe a particular style given any image patch content.

4.2 Bilinear Sparse Coding of Natural Images

Figure 1 shows the results of training on natural image data. A comparison between the
learned features for the linear generative model (Equation 1) and the bilinear model is



(a)

i = 1

i = 2

Bilinear basislinear basis
Example ofExample of

wy(3)
iwy(2)

iwy(1)
iwy(0)

iwy(−1)
iwy(−2)

iwy(−3)
iwi

(b)

patch
Translated

patch
Canonical

transformation
Estimated

vectors

3

91

9

21 7 8

1 7 82

feature
Estimated

vector 9 913
i

j
↓

y →

y

x

wi j after learning

y
j =

x

i =

Figure 1: Representing natural images and their transformations with a sparse bilin-
ear model. (a) A comparison of learned features between a standard linear model and a
bilinear model, both trained with the same sparseness priors. The two rows for the bilinear
case depict the translated object features w (

�
(see Equation 3) for translations of ��� � ����� � �

pixels. (b) The representation of an example natural image patch, and of the same patch
translated to the left. Note that the bar plot representing the � vector is indeed sparse, hav-
ing only three significant coefficients. The code for the style vectors for both the canonical
patch, and the translated one is likewise sparse. The 	

� � basis images are shown for those
dimensions which have non-zero coefficients for


 �
or � � .

provided in Figure 1 (a). Although both show simple, localized, and oriented features,
the bilinear method is able to model the same features under different transformations. In
this case, the range � ��� � � $ horizontal translations were used in the training of the bilinear
model. Figure 1 (b) provides an example of how the bilinear sparse coding model encodes
a natural image patch and the same patch after it has been translated. Note that both the �
and � vectors are sparse.

Figure 2 shows how the model can account for a given localized feature at different loca-
tions by varying the y vector. As shown in the last column of the figure, the translated local
feature is generated by linearly combining a sparse set of basis vectors 	

� � .
4.3 Towards Parts-Based Object Recognition

The bilinear generative model in Equation 2 uses the same set of transformation values � �
for all the features � � � � ����� � � . Such a model is appropriate for global transformations
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Figure 2: Translating a learned feature to multiple locations. The two rows of eight
images represent the individual basis vectors 	

� � for two values of � . The � � values for two
selected transformations for each � are shown as bar plots. � � ' ���&� denotes a translation of� ' ��� � pixels in the Cartesian plane. The last column shows the resulting basis vectors after
translation.

that apply to an entire image region such as a shift of � pixels for an image patch or a global
illumination change.

Consider the problem of representing an object in terms of its constituent parts. In this
case, we would like to be able to transform each part independently of other parts in order
to account for the location, orientation, and size of each part in the object image. The
standard bilinear model can be extended to address this need as follows:��� �� � ��� � ��� ��� 	

� � � �� � 
 � (12)

Note that each object feature � now has its own set of transformation values � �� . The double
summation is thus no longer symmetric. Also note that the standard model (Equation 2) is
a special case of Equation 12 where � �� � � � for all � .
We have conducted preliminary experiments to test the feasibility of Equation 12 using
a set of object features learned for the standard bilinear model. Fig. 3 shows the results.
These results suggest that allowing independent transformations for the different features
provides a rich substrate for modeling images and objects in terms of a set of local features
(or parts) and their individual transformations.

5 Summary and Conclusion

A fundamental problem in vision is to simultaneously recognize objects and their trans-
formations [8, 10]. Bilinear generative models provide a tractable way of addressing this
problem by factoring an image into object features and transformations using a bilinear
equation. Previous approaches used unconstrained bilinear models and produced global
basis vectors for image representation [12]. In contrast, recent research on image coding
has stressed the importance of localized, independent features derived from metrics that
emphasize the higher-order statistics of inputs [6, 3, 7, 5]. This paper introduces a new
probabilistic framework for learning bilinear generative models based on the idea of sparse
coding.

Our results demonstrate that bilinear sparse coding of natural images produces localized
oriented basis vectors that can simultaneously represent features in an image and their
transformation. We showed how the learned generative model can be used to translate a
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Figure 3: Modeling independently transformed features. (a) shows the standard bilinear
method of generating a translated feature by combining basis vectors 	

� � using the same
set of � � values for two different features ( � � � �

and � � ). (b) shows four examples of
images generated by allowing different values of � � for the two different features. Note the
significant differences between the resulting images, which cannot be obtained using the
standard bilinear model.

basis vector to different locations, thereby reducing the need to learn the same basis vector
at multiple locations as in traditional sparse coding methods. We also proposed an ex-
tension of the bilinear model that allows each feature to be transformed independently of
other features. Our preliminary results suggest that such an approach could provide a flex-
ible platform for adaptive parts-based object recognition, wherein objects are described by
a set of independent, shared parts and their transformations. The importance of parts-based
methods has long been recognized in object recognition in view of their ability to handle
a combinatorially large number of objects by combining parts and their transformations.
Few methods, if any, exist for learning representations of object parts and their transforma-
tions directly from images. Our ongoing efforts are therefore focused on deriving efficient
algorithms for parts-based object recognition based on the combination of bilinear models
and sparse coding.



Acknowledgments

This research is supported by NSF grant no. 133592 and a Sloan Research Fellowship to
RPNR.

References

[1] F. Attneave. Some informational aspects of visual perception. Psychological Review,
61(3):183–193, 1954.

[2] H. B. Barlow. Possible principles underlying the transformation of sensory messages.
In W. A. Rosenblith, editor, Sensory Communication, pages 217–234. Cambridge,
MA: MIT Press, 1961.

[3] A. J. Bell and T. J. Sejnowski. The ‘independent components’ of natural scenes are
edge filters. Vision Research, 37(23):3327–3338, 1997.

[4] G. E. Hinton and Z. Ghahramani. Generative models for discovering sparse dis-
tributed representations. Philosophical Transactions Royal Society B, 352(1177–
1190), 1997.

[5] M. S. Lewicki and T. J. Sejnowski. Learning overcomplete representations. Neural
Computation, 12(2):337–365, 2000.

[6] B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field properties
by learning a sparse code for natural images. Nature, 381:607–609, 1996.

[7] B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A
strategy employed by V1? Vision Research, 37:33113325, 1997.

[8] R. P. N. Rao and D. H. Ballard. Development of localized oriented receptive fields
by learning a translation-invariant code for natural images. Network: Computation in
Neural Systems, 9(2):219–234, 1998.

[9] R. P. N. Rao and D. H. Ballard. Predictive coding in the visual cortex: A functional
interpretation of some extra-classical receptive field effects. Nature Neuroscience,
2(1):79–87, 1999.

[10] R. P. N. Rao and D. L. Ruderman. Learning Lie groups for invariant visual per-
ception. In Advances in Neural Information Processing Systems 11, pages 810–816.
Cambridge, MA: MIT Press, 1999.

[11] O. Schwartz and E. P. Simoncelli. Natural signal statistics and sensory gain control.
Nature Neuroscience, 4(8):819–825, August 2001.

[12] J. B. Tenenbaum and W. T. Freeman. Separating style and content with bilinear mod-
els. Neural Computation, 12(6):1247–1283, 2000.


