Annealing and the Rate Distortion Problem

Albert E. Parker

Department of Mathematical Sciences Montana State University Bozeman, MT 59771 parker@math.montana.edu

Tomáš Gedeon

Department of Mathematical Sciences Montana State University gedeon@math.montana.edu

Alexander G. Dimitrov

Center for Computational Biology Montana State University alex@nervana.montana.edu

Abstract

In this paper we introduce methodology to determine the bifurcation structure of optima for a class of similar cost functions from Rate Distortion Theory, Deterministic Annealing, Information Distortion and the Information Bottleneck Method. We also introduce a numerical algorithm which uses the explicit form of the bifurcating branches to find optima at a bifurcation point.

1 Introduction

This paper analyzes a class of optimization problems

$$\max_{q \in \Delta} G(q) + \beta D(q) \tag{1}$$

where Δ is a linear constraint space, G and D are continuous, real valued functions of q, smooth in the interior of Δ , and $\max_{q \in \Delta} G(q)$ is known. Furthermore, G and D are invariant under the group of symmetries S_N . The goal is to solve (1) for $\beta = \mathcal{B} \in [0, \infty)$.

This type of problem, which appears to be NP hard, arises in Rate Distortion Theory [1, 2], Deterministic Annealing [3], Information Distortion [4, 5, 6] and the Information Bottleneck Method [7, 8].

The following basic algorithm, various forms of which have appeared in [3, 4, 6, 7, 8], can be used to solve (1) for $\beta = \mathcal{B}$.

Algorithm 1 Let

$$q_0$$
 be the maximizer of $\max_{q \in \Delta} G(q)$ (2)

and let $\beta_0 = 0$. For $k \ge 0$, let (q_k, β_k) be a solution to (1). Iterate the following steps until $\beta_{\kappa} = \mathcal{B}$ for some κ .

1. Perform β -step: Let $\beta_{k+1} = \beta_k + d_k$ where $d_k > 0$.

- 2. Take $q_{k+1}^{(0)} = q_k + \eta$, where η is a small perturbation, as an initial guess for the solution q_{k+1} at β_{k+1} .
- 3. Optimization: solve

$$\max_{q \in \Delta} G(q) + \beta_{k+1} D(q)$$

to get the maximizer q_{k+1} , using initial guess $q_{k+1}^{(0)}$.

We introduce methodology to efficiently perform algorithm 1. Specifically, we implement numerical continuation techniques [9, 10] to effect steps 1 and 2. We show how to detect bifurcation and we rely on bifurcation theory with symmetries [11, 12, 13] to search for the desired solution branch. This paper concludes with the improved algorithm 6 which solves (1).

2 The cost functions

The four problems we analyze are from Rate Distortion Theory [1, 2], Deterministic Annealing [3], Information Distortion [4, 5, 6] and the Information Bottleneck Method [7, 8]. We discuss the explicit form of the cost function (i.e. G(q) and D(q)) for each of these scenarios in this section.

2.1 The distortion function D(q)

Rate distortion theory is the information theoretic approach to the study of optimal source coding systems, including systems for quantization and data compression [2]. To define how well a source, the random variable Y, is represented by a particular representation using N symbols, which we call Y_N , one introduces a distortion function between Y and Y_N

$$D(q(y_N|y)) = D(Y, Y_N) = E_{y,y_N} d(y, y_N) = \sum_y \sum_{y_N} q(y_N|y) p(y) d(y, y_N)$$

where $d(y, y_N)$ is the *pointwise distortion function* on the individual elements of $y \in Y$ and $y_N \in Y_N$. $q(y_N|y)$ is a stochastic map or *quantization* of Y into a representation Y_N [1, 2]. The constraint space

$$\Delta := \{ q(y_N|y) \mid \sum_{y_N} q(y_N|y) = 1 \text{ and } q(y_N|y) \ge 0 \ \forall y \in Y \}$$
 (3)

(compare with (1)) is the space of valid quantizers in \Re^n . A representation Y_N is optimal if there is a quantizer $q^*(y_N|y)$ such that $D(q^*) = \min_{q \in \Delta} D(q)$.

In engineering and imaging applications, the distortion function is usually chosen as the *mean* squared error [1, 3, 14], $\hat{D}(Y, Y_N) = E_{y,y_N} \hat{d}(y,y_N)$, where the pointwise distortion function $\hat{d}(y,y_N)$ is the Euclidean squared distance. In this case, $\hat{D}(Y,Y_N)$ is a linear function of the quantizer. In [4, 5, 6], the *information distortion measure*

$$D_I(Y, Y_N) := \sum_{y, y_N} p(y, y_N) KL(p(x|y_N)||p(x|y)) = I(X; Y) - I(X; Y_N)$$

is used, where the Kullback-Leibler divergence KL is the pointwise distortion function. Unlike the pointwise distortion functions usually investigated in information theory [1, 3], this one is nonlinear, it explicitly considers a third space, X, of inputs, and it depends on the quantizer $q(y_N|y)$ through $p(x|y_N) = \sum_y p(x|y) \frac{q(y_N|y)p(y)}{p(y_N)}$. The only term in D_I which depends on the quantizer is $I(X;Y_N)$, so we can replace D_I with the effective distortion

$$D_{eff}(q) := I(X; Y_N).$$

 $D_{eff}(q)$ is the function D(q) from (1) which has been considered in [4, 5, 6, 7, 8].

2.2 Rate Distortion

There are two related methods used to analyze communication systems at a distortion $D(q) \le D_0$ for some given $D_0 \ge 0$ [1, 2, 3]. In rate distortion theory [1, 2], the problem of finding a minimum rate at a given distortion is posed as a *minimal information rate* distortion problem:

$$R(D_0) = \begin{array}{c} \min_{q(y_N|y) \in \Delta} I(Y; Y_N) \\ D(Y; Y_N) \le D_0 \end{array} . \tag{4}$$

This formulation is justified by the Rate Distortion Theorem [1]. A similar exposition using the Deterministic Annealing approach [3] is a *maximal entropy* problem

$$\max_{q(y_N|y)\in\Delta} H(Y_N|Y) \\ D(Y;Y_N) \le D_0$$
 (5)

The justification for using (5) is Jayne's maximum entropy principle [15]. These formulations are related since $I(Y; Y_N) = H(Y_N) - H(Y_N|Y)$.

Let $I_0 > 0$ be some given information rate. In [4, 6], the neural coding problem is formulated as an entropy problem as in (5)

$$\max_{q(y_N|y)\in\Delta} H(Y_N|Y) \atop D_{eff}(q) \ge I_0 \tag{6}$$

which uses the nonlinear effective information distortion measure D_{eff} .

Tishby et. al. [7, 8] use the information distortion measure to pose an information rate distortion problem as in (4)

$$\frac{\min_{q(y_N|y)\in\Delta}I(Y;Y_N)}{D_{eff}(q)\geq I_0}$$
(7)

Using the method of Lagrange multipliers, the rate distortion problems (4),(5),(6),(7) can be reformulated as finding the maxima of

$$\max_{q \in \Delta} F(q, \beta) = \max_{q \in \Delta} [G(q) + \beta D(q)]$$
 (8)

as in (1) where $\beta = \mathcal{B}$. For the maximal entropy problem (6),

$$F(q,\beta) = H(Y_N|Y) + \beta D_{eff}(q) \tag{9}$$

and so G(q) from (1) is the conditional entropy $H(Y_N|Y)$. For the minimal information rate distortion problem (7),

$$F(q,\beta) = -I(Y;Y_N) + \beta D_{eff}(q) \tag{10}$$

and so $G(q) = -I(Y; Y_N)$.

In [3, 4, 6], one explicitly considers $\mathcal{B}=\infty$. For (9), this involves taking $\lim_{\beta\to\infty}\max_{q\in\Delta}F(q,\beta)=\max_{q\in\Delta}D_{eff}(q)$ which in turn gives $\min_{q(y_N|y)\in\Delta}D_I$. In Rate Distortion Theory and the Information Bottleneck Method, one could be interested in solutions to (8) for finite \mathcal{B} which takes into account a tradeoff between $I(Y;Y_N)$ and D_{eff} .

For lack of space, here we consider (9) and (10). Our analysis extends easily to similar formulations which use a norm based distortion such as $\hat{D}(q)$, as in [3].

3 Improving the algorithm

We now turn our attention back to algorithm 1 and indicate how numerical continuation [9, 10], and bifurcation theory with symmetries [11, 12, 13] can improve upon the choice of the algorithm's parameters.

We begin by rewriting (8), now incorporating the Lagrange multipliers for the equality constraint $\sum_{y_N} q(y_N|y_k) = 1$ from (3) which must be satisfied for each $y_k \in Y$. This gives the Lagrangian

$$\mathcal{L}(q,\lambda,\beta) = F(q,\beta) + \sum_{k=1}^{K} \lambda_k \left(\sum_{y_N} q(y_N|y_k) - 1\right). \tag{11}$$

There are optimization schemes, such as the Fixed Point [4, 6] and projected Augmented Lagrangian [6, 16] methods, which exploit the structure of (11) to find local solutions to (8) for step 3 of algorithm 1.

3.1 Bifurcation structure of solutions

It has been observed that the solutions $\{q_k\}$ undergo bifurcations or phase transitions [3, 4, 6, 7, 8]. We wish to pose (8) as a dynamical system in order to study the bifurcation structure of local solutions for $\beta \in [0, \mathcal{B}]$. To this end, consider the equilibria of the flow

$$\begin{pmatrix} \dot{q} \\ \dot{\lambda} \end{pmatrix} = \nabla_{q,\lambda} \mathcal{L}(q,\lambda,\beta) \tag{12}$$

for $\beta \in [0,\mathcal{B}]$. These are points $\begin{pmatrix} q^* \\ \lambda^* \end{pmatrix}$ where $\nabla_{q,\lambda}\mathcal{L}(q^*,\lambda^*,\beta)=0$ for some β . The Jacobian of this system is the Hessian $\Delta_{q,\lambda}\mathcal{L}(q,\lambda,\beta)$. Equilibria, (q^*,λ^*) , of (12), for which $\Delta_q F(q^*,\beta)$ is negative definite, are local solutions of (8) [16, 17].

Let |Y| = K, $|Y_N| = N$, and n = NK. Thus, $q \in \Delta \subset \mathbb{R}^n$ and $\lambda \in \mathbb{R}^K$. The $(n + K) \times (n + K)$ Hessian of (11) is

$$\Delta_{q,\lambda}\mathcal{L}(q,\lambda,\beta) = \left(\begin{array}{cc} \Delta_q F(q,\beta) & J^T \\ J & \mathbf{0} \end{array} \right)$$

where $\mathbf{0}$ is $K \times K$ [17]. $\Delta_q F$ is the $n \times n$ block diagonal matrix of $N \times K$ matrices $\{B_i\}_{i=1}^N$ [4]. J is the $K \times n$ Jacobian of the vector of K constraints from (11),

$$J = \underbrace{\begin{pmatrix} I_K & I_K & \dots & I_K \end{pmatrix}}_{N \text{ blocks}}.$$
 (13)

The kernel of $\Delta_{q,\lambda}\mathcal{L}$ plays a pivotal role in determining the bifurcation structure of solutions to (8). This is due to the fact that bifurcation of an equilibria (q^*,λ^*) of (12) at $\beta=\beta^*$ happen when $\ker \Delta_{q,\lambda}\mathcal{L}(q^*,\lambda^*,\beta^*)$ is nontrivial. Furthermore, the bifurcating branches are tangent to certain linear subspaces of $\ker \Delta_{q,\lambda}\mathcal{L}(q^*,\lambda^*,\beta^*)$ [12].

3.2 Bifurcations with symmetry

Any solution $q^*(y_N|y)$ to (8) gives another equivalent solution simply by permuting the labels of the classes of Y_N . For example, if P_1 and P_2 are two $n \times 1$ vectors such that for a solution $q^*(y_N|y)$, $q^*(y_N=1|y)=P_1$ and $q^*(y_N=2|y)=P_2$, then the quantizer where $\hat{q}(y_N=1|y)=P_2$, $\hat{q}(y_N=2|y)=P_1$ and $\hat{q}(y_N|y)=q^*(y_N|y)$ for all other classes y_N is a maximizer of (8) with $F(\hat{q},\beta)=F(q^*,\beta)$. Let S_N be the algebraic group of all permutations on N symbols [18, 19]. We say that $F(q,\beta)$ is S_N -invariant if $F(q,\beta)=F(\sigma(q),\beta)$ where $\sigma(q)$ denotes the action on q by permutation of the classes of Y_N as defined by any $\sigma\in S_N$ [17]. Now suppose that a solution q^* is fixed by all the elements of S_M for $M\leq N$. Bifurcations at $\beta=\beta^*$ in this scenario are called symmetry breaking if the bifurcating solutions are fixed (and only fixed) by subgroups of S_M .

To determine where a bifurcation of a solution (q^*,λ^*,β) occurs, one determines β for which $\Delta_q F(q^*,\beta)$ has a nontrivial kernel. This approach is justified by the fact that $\Delta_{q,\lambda} \mathcal{L}(q^*,\lambda^*,\beta)$ is singular if and only if $\Delta_q F(q^*,\beta)$ is singular [17]. At a bifurcation (q^*,λ^*,β^*) where q^* is fixed by S_M for $M\leq N$, $\Delta_q F(q^*,\beta^*)$ has M identical blocks. The bifurcation is generic if

each of the identical blocks has a single 0-eigenvector,
$$\boldsymbol{v}$$
, and the other blocks are nonsingular. (14)

Thus, a generic bifurcation can be detected by looking for singularity of one of the $K \times K$ identical blocks of $\Delta_q F(q^*,\beta)$. We call the classes of Y_N which correspond to identical blocks $\mathit{unresolved}$ classes. The classes of Y_N that are not unresolved are called $\mathit{resolved}$ classes.

The Equivariant Branching Lemma and the Smoller-Wasserman Theorem [12, 13] ascertain the existence of explicit bifurcating solutions in subspaces of $\ker \Delta_{q,\lambda} \mathcal{L}(q^*,\lambda^*,\beta^*)$ which are fixed by special subgroups of S_M [12, 13]. Of particular interest are the bifurcating solutions in subspaces of $\ker \Delta_{q,\lambda} \mathcal{L}(q^*,\lambda^*,\beta^*)$ of dimension 1 guaranteed by the following theorem

Theorem 2 [17] Let $(q^*, \lambda^*, \beta^*)$ be a generic bifurcation of (12) which is fixed (and only fixed) by S_M , for $1 < M \le N$. Then, for small t, with $\beta(t = 0) = \beta^*$, there exists M bifurcating solutions,

$$\begin{pmatrix} q^* \\ \lambda^* \\ \beta^* \end{pmatrix} + \begin{pmatrix} t \boldsymbol{u}_m \\ \beta(t) \end{pmatrix}, \text{ where } 1 \le m \le M, \tag{15}$$

$$[\boldsymbol{u}_m]_{\nu} = \begin{cases} (M-1)\boldsymbol{v} & \text{if } \nu \text{ is the } m^{th} \text{ unresolved class of } Y_N \\ -\boldsymbol{v} & \text{if } \nu \text{ is some other unresolved class of } Y_N \\ \boldsymbol{0} & \text{otherwise} \end{cases}$$
(16)

and v is defined as in (14). Furthermore, each of these solutions is fixed by the symmetry group S_{M-1} .

For a bifurcation from the uniform quantizer, $q_{\frac{1}{N}}$, which is identically $\frac{1}{N}$ for all y and all y_N , all of the classes of Y_N are unresolved. In this case,

$$\boldsymbol{u}_m = (-\boldsymbol{v}^T, ..., -\boldsymbol{v}^T, (N-1)\boldsymbol{v}^T, -\boldsymbol{v}^T, ..., -\boldsymbol{v}^T, \boldsymbol{0}^T)^T$$

where $(N-1)\boldsymbol{v}$ is in the m^{th} component of \boldsymbol{u}_m .

Relevant to the computationalist is that instead of looking for a bifurcation by looking for singularity of the $n \times n$ Hessian $\Delta_q F(q^*,\beta)$, one may look for singularity of one of the $K \times K$ identical blocks, where $K = \frac{n}{N}$. After bifurcation of a local solution to (8) has been detected at $\beta = \beta^*$, knowledge of the bifurcating directions makes finding solutions of interest for $\beta > \beta^*$ much easier (see section 3.4.1).

3.3 The subcritical bifurcation

In all problems under consideration, the solution for $\beta=0$ is known. For (9), (10) this solution is $q_0=q_{\frac{1}{N}}$. For (4) and (5), q_0 is the mean of Y. Rose [3] was able to compute explicitly the critical value β^* where q_0 loses stability for the Euclidean pointwise distortion function. We have the following related result.

Theorem 3 [20] Consider problems (9), (10). The solution $q_0 = 1/N$ loses stability at $\beta = \beta^*$ where $1/\beta^*$ is the second largest eigenvalue of a discrete Markov chain on vertices $y \in Y$, where the transition probabilities $p(y_l \to y_k) := \sum_i p(y_k|x_i)p(x_i|y_l)$.

Corollary 4 Bifurcation of the solution $(q_{\frac{1}{N}}, \beta)$ in (9), (10) occurs at $\beta \geq 1$.

The discriminant of the bifurcating branch (15) is defined as [17]

$$\zeta(q^*, \beta^*, \boldsymbol{u}_m) = \langle \boldsymbol{u}_m, \partial_{q,\lambda}^3 \mathcal{L}(q^*, \lambda^*, \beta^*) [\boldsymbol{u}_m, EL^-E\partial_{q,\lambda}^3 \mathcal{L}(q^*, \lambda^*, \beta^*) [\boldsymbol{u}_m, \boldsymbol{u}_m]] \rangle -3 \langle \boldsymbol{u}_m, \partial_{q,\lambda}^4 \mathcal{L}(q^*, \lambda^*, \beta^*) [\boldsymbol{u}_m, \boldsymbol{u}_m, \boldsymbol{u}_m] \rangle,$$

where $\langle \cdot, \cdot \rangle$ is the Euclidean inner product, $\partial_{q,\lambda}^n \mathcal{L}[\cdot, ..., \cdot]$ is the multilinear form of the n^{th} derivative of \mathcal{L} , E is the projection matrix onto $\operatorname{range}(\Delta_{q,\lambda}\mathcal{L}(q^*,\lambda^*,\beta^*))$, and L^- is the Moore-Penrose generalized inverse of the Hessian $\Delta_{q,\lambda}\mathcal{L}(q^*,\lambda^*,\beta^*)$.

Theorem 5 [17] If $\zeta(q^*, \beta^*, \mathbf{u}_m) < 0$, then the bifurcating branch (15) is subritical (i.e. a first order phase transition). If $\zeta(q^*, \beta^*, \mathbf{u}_m) > 0$, then (15) is supercritical.

For a data set with a joint probability distribution modelled by a mixture of four Gaussians as in [4], Theorem 5 predicts a subcritical bifurcation from $(q_{\frac{1}{N}}, \beta^* \approx 1.038706)$ for (9) when $N \geq 3$. The existence of a subcritical bifurcation (a first order phase transition) is intriguing.

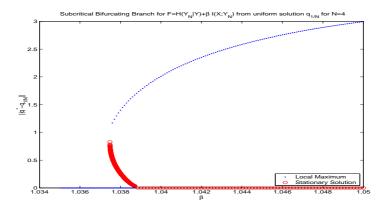


Figure 1: A joint probability space on the random variables (X,Y) was constructed from a mixture of four Gaussians as in [4]. Using this probability space, the equilibria of (12) for F as defined in (9) were found using Newton's method. Depicted is the subcritical bifurcation from $(q_{\frac{1}{2}},\beta^*\approx 1.038706)$.

In analogy to the rate distortion curve [2, 1], we can define an H-I curve for the problem (6)

$$H(I_0) := \max_{q \in \Delta, D_{eff} \ge I_0} H(Y_N | Y).$$

Let $I_{\max} = \max_{q \in \Delta} D_{eff}$. Then for each $I_0 \in (0, I_{\max})$ the value $H(I_0)$ is well defined and achieved at a point where $D_{eff} = I_0$. At such a point there is a Lagrange multiplier β such that $\nabla_{q,\lambda} \mathcal{L} = \mathbf{0}$ (compare with (11) and (12)) and this β solves problem (9). Therefore, for each $I \in (0, I_{\max})$, there is a corresponding β which solves problem (9). The existence of a subcritical bifurcation in β implies that this correspondence is not monotone for small values of I.

3.4 Numerical Continuation

Numerical *continuation* methods efficiently analyze the solution behavior of dynamical systems such as (12) [9, 10]. Continuation methods can speed up the search for the solution q_{k+1} at β_{k+1} in step 3 of algorithm 1 by improving upon the perturbed choice $q_{k+1}^{(0)} = q_k + \eta$. First,

the vector $(\partial_{\beta}q_k^T \ \partial_{\beta}\lambda_k^T)^T$ which is tangent to the curve $\nabla_{q,\lambda}\mathcal{L}(q,\lambda,\beta) = \mathbf{0}$ at (q_k,λ_k,β_k) is computed by solving the matrix system

$$\Delta_{q,\lambda} \mathcal{L}(q_k, \lambda_k, \beta_k) \begin{pmatrix} \partial_{\beta} q_k \\ \partial_{\beta} \lambda_k \end{pmatrix} = -\partial_{\beta} \nabla_{q,\lambda} \mathcal{L}(q_k, \lambda_k, \beta_k). \tag{17}$$

Now the initial guess in step 2 becomes $q_{k+1}^{(0)} = q_k + d_k \partial_\beta q_k$ where $d_k = \frac{\Delta s}{\sqrt{||\partial_\beta q_k||^2 + ||\partial_\beta \lambda_k||^2 + 1}}$ for $\Delta s > 0$. Furthermore, β_{k+1} in step 1 is found by using this same d_k . This choice of d_k assures that a fixed step along $(\partial_\beta q_k^T \ \partial_\beta \lambda_k^T)^T$ is taken for each k. We use three different continuation methods which implement variations of this scheme: Parameter, Tangent and Pseudo Arc-Length [9, 17]. These methods can greatly decrease the optimization iterations needed to find q_{k+1} from $q_{k+1}^{(0)}$ in step 3. The cost savings can be significant, especially when continuation is used in conjunction with a Newton type optimization scheme which explicitly uses the Hessian $\Delta_q F(q_k, \beta_k)$. Otherwise, the CPU time

3.4.1 Branch switching

incurred from solving (17) may outweigh this benefit.

Suppose that a bifurcation of a solution q^* of (8) has been detected at β^* . To proceed, one uses the explicit form of the bifurcating directions, $\{\boldsymbol{u}_m\}_{m=1}^M$ from (16) to search for the bifurcating solution of interest, say q_{k+1} , whose existence is guaranteed by Theorem 2. To do this, let $\boldsymbol{u} = \boldsymbol{u}_m$ for some $m \leq M$, then implement a branch switch [9]

$$q_{k+1}^{(0)} = q^* + d_k \cdot \mathbf{u}.$$

4 A numerical algorithm

We conclude with a numerical algorithm to solve (1). The section numbers in parentheses indicate the location in the text supporting each step.

Algorithm 6 Let q_0 be the maximizer of $\max_{q \in \Delta} G$, $\beta_0 = 1$ (3.3) and $\Delta s > 0$. For $k \ge 0$, let (q_k, β_k) be a solution to (1). Iterate the following steps until $\beta_{\kappa} = \mathcal{B}$ for some κ .

- 1. (3.4) Perform β -step: solve (17) for $(\partial_{\beta}q_k^T \ \partial_{\beta}\lambda_k^T)^T$ and select $\beta_{k+1} = \beta_k + d_k$ where $d_k = \frac{\Delta s}{\sqrt{||\partial_{\beta}q_k||^2 + ||\partial_{\beta}\lambda_k||^2 + 1}}$.
- 2. (3.4) The initial guess for q_{k+1} at β_{k+1} is $q_{k+1}^{(0)} = q_k + d_k \cdot \partial_{\beta} q_k$.
- 3. Optimization: solve

$$\max_{q \in \Delta} G(q) + \beta_{k+1} D(q)$$

to get the maximizer q_{k+1} , using initial guess $q_{k+1}^{(0)}$.

4. (3.2) Check for bifurcation: compare the sign of the determinant of an identical block of each of

$$\Delta_q[G(q_k) + \beta_k D(q_k)]$$
 and $\Delta_q[G(q_{k+1}) + \beta_{k+1} D(q_{k+1})].$

If a bifurcation is detected, then set $q_{k+1}^{(0)} = q_k + d_k \cdot \boldsymbol{u}$ where \boldsymbol{u} is defined as in (16) for some $m \leq M$, and repeat step 3.

Acknowledgments

Many thanks to Dr. John P. Miller at the Center for Computational Biology at Montana State University-Bozeman. This research is partially supported by NSF grants DGE 9972824, MRI 9871191, and EIA-0129895; and NIH Grant R01 MH57179.

References

- [1] Thomas Cover and Jay Thomas. *Elements of Information Theory*. Wiley Series in Communication, New York, 1991.
- [2] Robert M. Gray. Entropy and Information Theory. Springer-Verlag, 1990.
- [3] Kenneth Rose. Deterministic annealing for clustering, compression, classification, regerssion, and related optimization problems. *Proc. IEEE*, 86(11):2210–2239, 1998.
- [4] Alexander G. Dimitrov and John P. Miller. Neural coding and decoding: communication channels and quantization. *Network: Computation in Neural Systems*, 12(4):441– 472, 2001.
- [5] Alexander G. Dimitrov and John P. Miller. Analyzing sensory systems with the information distortion function. In Russ B Altman, editor, *Pacific Symposium on Biocomputing 2001*. World Scientific Publishing Co., 2000.
- [6] Tomas Gedeon, Albert E. Parker, and Alexander G. Dimitrov. Information distortion and neural coding. *Canadian Applied Mathematics Quarterly*, 2002.
- [7] Naftali Tishby, Fernando C. Pereira, and William Bialek. The information bottleneck method. The 37th annual Allerton Conference on Communication, Control, and Computing, 1999.
- [8] Noam Slonim and Naftali Tishby. Agglomerative information bottleneck. In S. A. Solla, T. K. Leen, and K.-R. Müller, editors, *Advances in Neural Information Processing Systems*, volume 12, pages 617–623. MIT Press, 2000.
- [9] Wolf-Jurgen Beyn, Alan Champneys, Eusebius Doedel, Willy Govaerts, Yuri A. Kuznetsov, and Bjorn Sandstede. *Handbook of Dynamical Systems III*. World Scientific, 1999. Chapter in book: Numerical Continuation and Computation of Normal Forms
- [10] Eusebius Doedel, Herbert B. Keller, and Jean P. Kernevez. Numerical analysis and control of bifurcation problems in finite dimensions. *International Journal of Bifurcation and Chaos*, 1:493–520, 1991.
- [11] M. Golubitsky and D. G. Schaeffer. *Singularities and Groups in Bifurcation Theory I.* Springer Verlag, New York, 1985.
- [12] M. Golubitsky, I. Stewart, and D. G. Schaeffer. *Singularities and Groups in Bifurcation Theory II*. Springer Verlag, New York, 1988.
- [13] J. Smoller and A. G. Wasserman. Bifurcation and symmetry breaking. *Inventiones mathematicae*, 100:63–95, 1990.
- [14] Allen Gersho and Robert M. Gray. Vector Quantization and Signal Compression. Kluwer Academic Publishers, 1992.
- [15] E. T. Jaynes. On the rationale of maximum-entropy methods. *Proc. IEEE*, 70:939–952,
- [16] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York, 2000.
- [17] Albert E. Parker III. Solving the rate distortion problem. PhD thesis, Montana State University, 2003.
- [18] H. Boerner. Representations of Groups. Elsevier, New York, 1970.
- [19] D. S. Dummit and R. M. Foote. Abstract Algebra. Prentice Hall, NJ, 1991.
- [20] Tomas Gedeon and Bryan Roosien. Phase transitions in information distortion. In preparation, 2003.