Fast Embedding of
Sparse Music Similarity Graphs

John C. Platt
Microsoft Research
1 Microsoft Way
Redmond, WA 98052 USA
jplatt@microsoft.com

Abstract

This paper applies fast sparse multidimensional scaling (MDS) to a large
graph of music similarity, with 267K vertices that represent artists, al-
bums, and tracks; and 3.22M edges that represent similarity between
those entities. Once vertices are assigned locations in a Euclidean space,
the locations can be used to browse music and to generate playlists.

MDS on very large sparse graphs can be effectively performed by a
family of algorithms called Rectangular Dijsktra (RD) MDS algorithms.
These RD algorithms operate on a dense rectangular slice of the distance
matrix, created by calling Dijsktra a constant number of times. Two RD
algorithms are compared: Landmark MDS, which uses the Nystrom ap-
proximation to perform MDS; and a new algorithm called Fast Sparse
Embedding, which uses FastMap. These algorithms compare favorably
to Laplacian Eigenmaps, both in terms of speed and embedding quality.

1 Introduction

This paper examines a general problem: given a sparse graph of similarities between a set of
objects, quickly assign each object a location in a low-dimensional Euclidean space. This
general problem can arise in several different applications: the paper addresses a specific

application to music similarity.

In the case of music similarity, a set of musical entities (i.e., artists, albums, tracks) must
be placed in a low-dimensional space. Human editors have already supplied a graph of
similarities, e.g., artist A is similar to artist B. There are three good reasons to embed a

musical similarity graph:

1. Visualization — If a user’s musical collection is placed in two dimensions, it can

be easily visualized on a display. This visualization can aid musical browsing.

. Interpolation — Given a graph of similarities, it is simple to find music that
“sounds like” other music. However, once music is embedded in a low-
dimensional space, new user interfaces are enabled. For example, a user can spec-
ify a playlist by starting at song A and ending at song B, with the songs in the

playlist smoothly interpolating between A and B.

3. Compression — In order to estimate “sounds like” directly from a graph of music
similarities, the user must have access to the graph of all known music. However,
once all of the musical entities are embedded, the coordinates for the music in a
user’s collection can be shipped down to the user’s computer. These coordinates
are much smaller than the entire graph.

It is important to have algorithms that exploit the sparseness of similarity graphs because
large-scale databases of similarities are very often sparse. Human editors cannot create a
dense N x N matrix of music similarity for large values of N. The best editors can do is
identify similar artists, albums, and tracks. Furthermore, humans are poor at accurately
estimating large distances between entities (e.g., which is farther away from The Beatles:
Enya or Duke Ellington?)

Hence, there is a definite need for an scalable embedding algorithm that can handle a sparse
graph of similarities, generalizing to similarities not seen in the training set.

1.1 Structure of Paper

The paper describes three existing approaches to the sparse embedding problem in section
2 and section 3 describes a new algorithm for solving the problem. Section 4.1 verifies
that the new algorithm does not get stuck in local minima and section 4.2 goes into further
detail on the application of embedding musical similarity into a low-dimensional Euclidean
space.

2 Methods for Sparse Embedding

Multidimensional scaling (MDS) [4] is an established branch of statistics that deals with
embedding objects in a low-dimensional Euclidean space based on a matrix of similarities.
More specifically, MDS algorithms take a matrix of dissimilarities 6, and find vectors X,
whose inter-vector distances d,, are well matched to 8,;. A common flexible algorithm is
called ALSCAL [13], which encourages the inter-vector distances to be near some ideal

values:
IIlinZ(d'%de’%)z, (1)

Xr
where d are derived from the dissimilarities 8, typically through a linear relationship.

There are three existing approaches for applying MDS to large sparse dissimilarity matri-
ces:

1. Apply an MDS algorithm to the sparse graph directly.

Not all MDS algorithms require a dense matrix J,. For example, ALSCAL can operate on
a sparse matrix by ignoring missing terms in its cost function (1). However, as shown in
section 4.1, ALSCAL cannot reconstruct the position of known data points given a sparse
matrix of dissimilarities.

2. Use a graph algorithm to generate a full matrix of dissimilarities.

The Isomap algorithm [14] finds an embedding of a sparse set of dissimilarities into a low-
dimensional Euclidean space. Isomap first applies Floyd’s shortest path algorithm [9] to
find the shortest distance between any two points in the graph, and then uses these N x N
distances as input to a full MDS algorithm. Once in the low-dimensional space, data can
easily be interpolated or extrapolated. Note that the systems in [14] have N = 1000.

For generalizing musical artist similarity, [7] also computes an N x N matrix of distances
between all artists in a set, based on the shortest distance through a graph. The sparse

graph in [7] was generated by human editors at the All Music Guide. [7] shows that human
perception of artist similarity is well modeled by generalizing using the shortest graph
distance. Similar to [14], [7] projects the N x N set of artist distances into a Euclidean
space by a full MDS algorithm. Note that the MDS system in [7] has N = 412.

The computational complexity for these methods inhibit their use on large data sets. Let us
analyze the complexity for each portion of this method.

For finding all of the minimum distances, Floyd’s algorithm operates on a dense matrix of
distances and has computational complexity O(N?). A better choice is to run Dijkstra’s
algorithm [6], which finds the minimum distances from a single vertex to all other vertices
in the graph. Thus, Dijkstra’s algorithm must be run N times. The complexity of one invo-
cation of Dijkstra’s algorithm (when implemented with a binary heap [11]) is O(M1ogN)
where M is the number of edges in the graph.

Running a standard MDS algorithm on a full N x N matrix of distances requires O(N2Kd)
computation, where K is the number of iterations of the MDS algorithm and 4 is the di-
mensionality of the embedding. Therefore, the overall computational complexity of the
approach is O(MNlogN + N’Kd), which can be prohibitive for large N and M.

3. Use a graph algorithm to generate a thin dense rectangle of distances.

One natural way to reduce the complexity of the graph traversal part of Isomap is to not run
Dijkstra’s algorithm N times. In other words, instead of generating the entire N x N matrix
of dissimilarities, generate an interesting subset of n rows, n << N.

There are a family of MDS algorithms, here called Rectangular Dijkstra (RD) MDS al-
gorithms. RD algorithms operate on a dense rectangle of distances, filled in by Dijkstra’s
algorithm. The first published member of this family was Landmark MDS (LMDS) [5].
Bengio, et al.[2] show that LMDS is the Nystrom approximation [1] combined with clas-
sical MDS [4] operating on the rectangular distance matrix. (See also [10] for Nystrom
applied to spectral clustering).

LMDS operates on a number of rows proportional to the embedding dimensionality, d.
Thus, Dijkstra gets called O(d) times. LMDS then centers the n x n distance submatrix,
converting it into a kernel matrix K. The top d column eigenvectors (¥;) and eigenvalues A;
of K are then computed. The embedding coordinate for the mth point is thus

. 1
Xn = 5 ZMij(Aj —Djnm), 2
J

where M;; = \7iT /i, A j is the average distance in the jth row of the rectangular distance
matrix and D, is the distance between the mth point and the jth point (j € [1..n]). Thus,

the computational complexity of LMDS is O(MdlogN + Nd? +d?).

3 New Algorithm: Fast Sparse Embedding

LMDS requires the solution of an n x n eigenproblem. To avoid this eigenproblem, this
paper presents a new RD MDS algorithm, called FSE (Fast Sparse Embedding). Instead of
a Nystrom approximation, FSE uses FastMap [8]: an MDS algorithm that takes a constant
number of rows of the dissimilarity matrix. FastMap iterates over the dimensions of the
projection, fixing the position of all vertices in each dimension in turn. FastMap thus
approximates the solution of the eigenproblem through deflation.

Consider the first dimension. Two vertices (¥,,X;) are chosen and the dissimilarity from
these two vertices to all other vertices i are computed: (8,;,0;). In FSE, these dissimi-
larities are computed by Dijkstra’s algorithm. During the first iteration (dimension), the
distances (d,;,dp;) are set equal to the dissimilarities.

The 2N distances can determine the location of the vertices along the dimension up to a
shift, through use of the law of cosines:
dg — dj;

X = Tab. (3)

For each subsequent dimension, two new vertices are chosen and new dissimilarities
(04i, Op;) are computed by Dijkstra’s algorithm. The subsequent dimensions are assumed to
be orthogonal to previous ones, so the distances for dimension N are computed from the
dissimilarities via:

N—1 N—1
Sr=dy+ Y (xan—xin)* = doy =83 — Y (Xan —xin)*. 4)
n=1 n=1

Thus, each dimension accounts for a fraction of the dissimilarity matrix, analogous to PCA.
Note that, except for dp, all other distances are needed as distance squared, so only one
square root for each dimension is required. The distances produced by Dijkstra’s algorithm
are the minimum graph distances modified by equation (4) in order to reflect the projection
used so far.

For each dimension, the vertices a and b are heuristically chosen to be as far apart as
possible. In order to avoid an O(N?) step in choosing a and b, [8] recommends starting
with an arbitrary point, finding the point furthest away from the current point, then setting
the current point to the farthest point and repeating.

The work of each Dijkstra call (including equation (4)) is O(MlogN + Nd), so the com-
plexity of the entire algorithm is O(MdlogN + Nd?).

4 Experimental Results

4.1 Artificial Data

Output of FSE

6.4
6.21

s
5.8r
5.61
541 &
5.2r

5t
4.81
4.61

44 . o .
4.5 5 55 6
Figure 1: Reconstructing a grid of points directly from a sparse distance matrix. On the
left, ALSCAL cannot reconstruct the grid, while on the right, FSE accurately reconstructs
the grid.

An MDS algorithm needs to be tested on distance matrices that are computed from dis-
tances between real points, in order to verify that the algorithm quickly produces sensible
results.

FSE and ALSCAL were both tested on a set of 100 points in a 10 x 10 2D grid with unit
spacing. The distance from each point to a random 10 of the nearest 20 other points were
presented to each algorithm. The results are shown in Figure 1. Procrustes analysis [4] is
applied to output of each algorithm; the output is shown after the best orthogonal affine
projection between the algorithm output and the original data.

Figure 1 shows that ALSCAL does a very poor job of reconstructing the locations of the
data points, while FSE accurately reconstructs the grid locations. ALSCAL’s poor per-
formance is caused by performing optimization on a non-convex cost function. When the
dissimilarity matrix is very sparse, there are not enough constraints on the final solution,
so ALSCAL gets stuck in a local minimum. Similar results were seen from Sammon’s
method [4].

These results show that FSE (and other RD MDS algorithms) are preferable to using sparse
MDS algorithms. FSE does not solve an optimization problem, hence does not get stuck in
a local minimum.

4.2 Application: Generalizing Music Similarity

This section presents the results of using RD MDS algorithms to project a large music
dissimilarity graph into low-dimensional Euclidean space. This projection enables visual-
ization and interpolation over music collections.

The dissimilarity graph was derived from a music metadata database. The database consists
of 10289 artists, 67799 albums, and 188749 tracks. Each track has subjective metadata
assigned to it by human editors: style (specific style), subgenre (more general style), vocal
code (gender of singer), and mood. See [12] for more details on the metadata. The database
contains which tracks occur on which albums and which artists created those albums.

Relationship Between Entities Edge Distance in Graph
Two tracks have same style, vocal code, mood
Two tracks have same style

Two tracks have same subgenre

Track is on album

Album is by artist

= B —

Table 1: Mapping of relationship to edge distance.

A sparse similarity graph was extracted from the metadata database according to Table 1.
Every track, album, and artist are represented by a vertex in the graph. Every track was
connected to all albums it appeared on, while each album was connected to its artist. The
track similarity edges were sampled randomly, to provide an average of 7 links of edges of
distance 1, 2, and 4. The final graph contained 267K vertices and 3.22M edges. RD MDS
enabled this experiment: the full distance matrix would have taken days to compute with
267K calls to Dijkstra. Also, the graph distances were derived after some tuning (not on
the test set): the speed of RD MDS enabled this tuning.

One advantage of the music application is that the quality of the embedding can be tested
externally. A test set of 50 playlists, with 444 pairs of sequential songs was gathered from
real users who listened to these playlists. An embedding is considered good if sequential
songs in the playlists are frequently closer to each other than random songs in the database.
Table 2 shows the quality of the embedding as a fraction of random songs that are closer
than sequential songs. The lower the fraction, the better the embedding, because the em-
bedding more accurately reflects users’ ideas of music similarity. This fraction is computed
by treating the pairwise distances as scores from a classifier, computing an ROC curve, then
computing 1.0-the area under the ROC curve [3].

Algorithm n Average % of CPU time
Random Songs Closer (sec)
than Sequential Songs

FSE 60 5.0% 52.8

LMDS 60 4.5% 52.7

LMDS 100 4.1% 87.4

LMDS 200 3.3% 175.0

LMDS 400 3.2% 355.1

Laplacian Eigenmaps | N/A 13.0% 8003.4

Table 2: Speed and accuracy of music embedding for various algorithms.

All embeddings are 20-dimensional (d = 20). The CPU time was measured on a 2.4 GHz
Pentium 4. FSE uses a fixed rectangle size n = 3d, so has one entry in the table. For the
same 1, FSE and LMDS are competitive. However, LMDS can trade off speed for accuracy
by increasing n.

A Laplacian Eigenmap applied to the entire sparse similarity matrix was much slower than
either of the RD MDS algorithms, and did not perform as well for this problem. A Gaussian
kernel with 6 = 2 was used to convert distances to similarities for the Laplacian Eigenmap.
The slowness of the Laplacian eigenmap prevented extensive tuning of the parameters.

T T T T T

Bob Dylan Aerosmith
Cat Stevens
251 - The Beatl :]
The|Eagles € beatles TheWho _-
Led Zeppelin
ol The Doors |
Jimi Hendrix

Talking Heads

15F Fleetwood Mac The Police
. -Dire Straits Bryan Ferry
The Rolling Stones
1 . 1
Kate Bush _Genesis
. Sheryl Crow
Suzanne Vega Alanis Morissette
0.5¢ Peter Gabriel |
Sarah McLachlan
of ‘ ‘ ‘ Tori Amos]
-0.5 0 0.5 1 1.5 2 25

Figure 2: LMDS Projection of the entire music dissimilarity graph into 2D. The coordinates
of 23 artists are shown.

Given that LMDS outperforms FSE for large n, this paper now presents qualitative results
from the LMDS n = 400 projection. First, the top two dimensions are plotted to form a
visualization of music space. This visualization is shown in Figure 4.2, which shows the

coordinates of 23 artists that occur near the center of the space. Even restricted to the top
two dimensions, the projection is sensible. For example, Tori Amos and Sarah McLachlan

are mapped to be very close.

Artist 1 Track 1 Artist 2 Track 2

Jimi Hendrix | Purple Haze Alanis Hand In My Pocket
Jimi Hendrix | Fire Alanis All I Really Want
Jimi Hendrix | Red House Alanis You Oughta Know
Jimi Hendrix | I Don’t Live Today Alanis Right Through You
Jimi Hendrix | Foxey Lady Alanis You Learn

Jimi Hendrix | 3rd Stone from the Sun || Alanis Ironic

Doors Waiting for the Sun Sarah McLachlan | Full of Grace
Doors LA Woman Sarah McLachlan | Hold On

Doors Riders on the Storm Sarah McLachlan | Good Enough
Doors Love her Madly Sarah McLachlan | The Path of Thorns
Cat Stevens Ready Sarah McLachlan | Possession

Cat Stevens Music Blondie Tide is High

Cat Stevens Jesus Sarah McLachlan | Ice Cream

Cat Stevens King of Trees Sarah McLachlan | Fumbling Towards Ecstasy
The Beatles Octopus’s Garden Fiona Apple Limp

The Beatles I’'m So Tired Fiona Apple Paper Bag

The Beatles Revolution 9 Fiona Apple Fast As You Can
The Beatles Sgt. Pepper’s Lonely Blondie Call Me

The Beatles Please Please Me Blondie Hanging on the Telephone
The Beatles Eleanor Rigby Blondie Rapture

Table 3: Two playlists produced by the system. Each playlist reads top to bottom. The
playlists interpolate between the first and last songs.

The main application for the music graph projection is the generation of playlists. There
are several different possible objectives for music playlists: background listening, dance
mixes, music discovery. One of the criteria for playlists is that they play similar music
together (i.e., avoid distracting jumps, like New Age to Heavy Metal). The goal for this
paper is to generate playlists for background listening. Therefore, the only criterion we
use for generation is smoothness and playlists are generated by linear interpolation in the
embedding space.

However, smoothness is not the only possible playlist generation mode: other criteria can
be added (such as matching beats or artist self-avoidance or minimum distance between
songs). These criteria can be added on top of the smoothness criteria. Such criteria are a
matter of subjective musical taste and are beyond the scope of this paper.

Table 3 shows two background-listening playlists formed by interpolating in the projected
space. The playlists were drawn from a collection of 3920 songs. Unlike the image in-
terpolation in [14], not every point in the 20-dimensional space has a valid song attached
to it. The interpolation was performed by first computing the line segment connecting the
first and last song, and then placing K equally-spaced points along the line segment, where
K is the number of slots in the playlist. For every slot, the location of the previous song
is projected onto a hyperplane normal to the line segment that goes through the ith point.
The projected location is then moved halfway to the ith point, and the nearest song to
the moved location is placed into the playlist. This method provides smooth interpolation
without large jumps, as can be seen in Table 3.

5 Discussion and Conclusions

Music playlist generation and browsing can utilize a large sparse similarity graph designed
by editors. In order to allow tractable computations on this graph, its vertices can be pro-
jected into a low-dimensional space. This projection enables smooth interpolation and
two-dimensional display of music.

Music similarity graphs are amongst the largest graphs ever to be embedded. Rectangular
Dijkstra MDS algorithms can be used to efficiently embed these large sparse graphs. This
paper showed that FSE and the Nystrom (LMDS) technique are both efficient and have
comparable performance for the same size of rectangle. Both algorithms are much more
efficient than Laplacian Eigenmaps. However, LMDS permits an accuracy/speed trade-off
that makes it preferable. Using LMDS, a music graph with 267K vertices and 3.22M edges
can be embedded in approximately 6 minutes.

References

[1] C. Baker. The numerical treatment of integral equations. Clarendon Press, Oxford,
1977.

[2] Y. Bengio, J.-F. Paiement, and P. Vincent. Out-of-sample extensions for LLE, Isomap,
MDS, Eigenmaps and spectral clustering. In S. Thrun, L. Saul, and B. Schg"lkopf,
editors, Proc. NIPS, volume 16, 2004.

[3] A. P. Bradley. The user of area under the ROC curve in the evaluation of machine
learning algorithms. Pattern Recognition, 30:1145-1159, 1997.

[4] T. F. Cox and M. A. A. Cox. Multidimensional Scaling. Number 88 in Monographs
on Statistics and Applied Probability. Chapman & Hall/CRC, 2nd edition, 2001.

[5] V. de Silva and J. B. Tenenbaum. Global versus local methods in nonlinear dimen-
sionality reduction. In S. Becker, S. Thrun, and K. Obermayer, editors, Proc. NIPS,
volume 15, pages 721-728, 2003.

[6] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerical Math-
ematics, 1:269-271, 1959.

[7] D. P. W. Ellis, B. Whitman, A. Berenzweig, and S. Lawrence. The quest for ground
truth in musical artist similarity. In Proc. International Conference on Music Infor-
mation Retrieval (ISMIR), 2002.

[8] C. Faloutsos and K.-I. Lin. Fastmap: A fast algorithm for indexing, data-mining and
visualization of traditional and multimedia databases. In Proc. ACM SIGMOD, pages
163-174, 1995.

[9] R. Floyd. Algorithm 97 (shortest path). Communications of the ACM, 7:345, 1962.

[10] C. Fowlkes, S. Belongie, and J. Malik. Efficient spatiotemporal grouping using the
Nystrom method. In Proc. CVPR, volume 1, pages [-231-1-238, 2001.

[11] D. B. Johnson. Efficient algorithms for shortest paths in sparse networks. JACM,
24:1-13, 1977.

[12] J. C.Platt, C.J. C. Burges, S. Swenson, C. Weare, and A. Zheng. Learning a gaussian
process prior for automatically generating music playlists. In T. Dietterich, S. Becker,
and Z. Ghahramani, editors, Proc. NIPS, volume 14, pages 1425-1432, 2002.

[13] Y. Takane, F. W. Young, and J. de Leeuw. Nonmetric individual differences multidi-
mensional scaling: an alternating least squares method with optimal scaling features.
Psychometrika, 42:7-67, 1977.

[14] J. B. Tenenbaum. Mapping a manifold of perceptual observations. In M. Jordan,
M. Kearns, and S. Solla, editors, Proc. NIPS, volume 10, pages 682688, 1998.

