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Abstract 

A balanced network leads to contradictory constraints on memory 
models, as exemplified in previous work on accommodation of 
synfire chains. Here we show that these constraints can be 
overcome by introducing a 'shadow' inhibitory pattern for each 
excitatory pattern of the model. This is interpreted as a double-
balance principle, whereby there exists both global balance 
between average excitatory and inhibitory currents and local 
balance between the currents carrying coherent activity at any 
given time frame. This principle can be applied to networks with 
Hebbian cell assemblies, leading to a high capacity of the 
associative memory. The number of possible patterns is limited by 
a combinatorial constraint that turns out to be P=0.06N within the 
specific model that we employ. This limit is reached by the 
Hebbian cell assembly network. To the best of our knowledge this 
is the first time that such high memory capacities are demonstrated 
in the asynchronous state of models of spiking neurons. 

1  Introduction 

Numerous studies analyze the different phases of unstructured networks of spiking 
neurons [1, 2]. These networks with random connectivity possess a phase of 
asynchronous activity, the asynchronous state (AS), which is the most interesting 
one from the biological perspective, since it is similar to physiological data. 
Unstructured networks, however, do not hold information in their connectivity 
matrix, and therefore do not store memories.  



 

Binary networks with ordered connectivity matrices, or structured networks, and 
their ability to store and retrieve memories, have been extensively studied in the 
past [3-8]. Applicability of these results to biologically plausible neuronal models is 
questionable. In particular, models of spiking neurons are known to have modes of 
synchronous global oscillations. Avoiding such modes, and staying in an AS, is a 
major constraint on networks of spiking neurons that is absent in most binary neural 
networks. As we will show below, it is this constraint that imposes a limit on 
capacity in our model. Existing associative memory models of spiking neurons have 
not strived for maximal pattern capacity [3, 4, 8]. 

Here, using an integrate-and-fire model, we embed structured synaptic connections 
in an otherwise unstructured network and study the capacity limit of the system. The 
system is therefore macroscopically unstructured, but microscopically structured. 
The unstructured network model is based on Brunel's [1] balanced network of 
integrate-and-fire neurons. In his model, the network possesses different phases, one 
of which is the AS. We replace his unstructured excitatory connectivity by a semi-
structured one, including a super-position of either synfire chains or Hebbian cell 
assemblies. 

The existence of a stable AS is a fundamental prerequisite of the system. There are 
two reasons for that: First, physiological measurements of cortical tissues reveal an 
irregular neuronal activity and an asynchronous population activity. These findings 
match the properties of the AS. Second, in term of information content, the entropy 
of the system is the highest when firing probability is uniformly distributed, as in an 
AS. In general, embedding one or two patterns will not destabilize the AS. 
Increasing the number of embedded patterns, however, will eventually destabilize 
the AS, leading to global oscillations. 

In previous work [9], we have demonstrated that the cause of AS instability is 
correlations between neurons that result from the presence of structure in the 
network. The patterns, be it Hebbian cell assemblies (HCA) or pools occurring in 
synfire chains (SFC), have an important characteristic: neurons that are members of 
the same pattern (or pool) share a large portion of their inputs. This common input 
correlates neuronal activities both when a pattern is activated and when both 
neurons are influenced by random activity. If too many patterns are embedded in the 
network, too many neurons become correlated due to common inputs, leading to 
globally synchronized deviations from mean activity. 

A qualitative understanding of this state of affairs is provided by a simple model of 
a threshold linear pair of neurons that receive n excitatory common, and correlated, 
inputs, and K-n excitatory, as well as K inhibitory, non-common uncorrelated 
inputs. Thinking of these neurons as belonging to a pattern or a pool within a 
network, we can obtain an interesting self-consistent result by assuming the 
correlation of the pair of neurons to be also the correlation in their common 
correlated input (as is likely to be the case in a network loaded with HCA or SFC). 
We find then [9] that there exists a critical pattern size, , below which 
correlations decay but above which correlations are amplified. Furthermore, the 
following scaling was found to exist 

cn

(1)  n r Kc c= . 

Implications of this model for the whole network are that:  (i) rc is independent of 
N, the size of the network, (ii) below nc the AS is stable, and (iii) above nc the AS is 
unstable. 



 

Using extensive computer simulations we were able [9] to validate all these 
predictions. In addition, keeping n<nc, we were able to observe traveling synfire 
waves on top of global asynchronous activity. 

The pattern's size n is also limited from below, n> nmin, by the requirement that n 
excitatory post-synaptic potentials (PSPs), on average, drive a neuron across its 
threshold. Since N>K and typically N>>K, together with Eq. (1) it follows that 

. Hence r( 2
min / crnN >> ) c and nmin set the lower bound of the network's size, 

above which it is possible to embed a reasonable number of patterns in the network 
without losing the AS.  In this paper we propose a solution that enables small nmin 
and large r values, which in turn enables embedding a large number of patterns in 
much smaller networks.  This is made possible by the doubly-balanced construction 
to be outlined below.  

2  The double-balance principle  

Counteracting the excitatory correlations with inhibitory ones is the principle that 
will allow us to solve the problem. Since we deal with balanced networks, in which 
the mean excitatory input is balanced by an inhibitory one, we note that this 
principle imposes a second type of balancing condition, hence we refer to it as the 
double- balance principle. 

In the following, we apply this principle by introducing synaptic connections 
between any excitatory pattern and its randomly chosen inhibitory pattern. These 
inhibitory patterns, which we call shadow patterns, are activated after the excitatory 
patterns fire, but have no special in-pattern connectivity or structured projections 
onto other patterns. The premise is that correlations evolved in the excitatory 
patterns will elicit correlated inhibitory activity, thus balancing the network's 
average correlation level. The size of the shadow pattern has to be small enough, so 
that the global network activity will not be quenched, yet large enough, so that the 
excitatory correlation will be counteracted. A balanced network that is embedded 
with patterns and their shadow patterns will be referred to as a doubly balanced 
network (DBN), to be contrasted with the singly balanced network (SBN) where 
shadow patterns are absent. 

3  Application of  the double balance principle .  

3 .1  The  Network  

We model neuronal activity with the Integrate and Fire [10] model. All neurons 
have the same parameters: ms10=τ , msref 5.2=τ , C=250pF. PSPs are modeled 
by a delta function with fixed delay. The number of synapses on a neuron is fixed 
and set to KE excitatory synapses from the local network, KE excitatory synapses 
from external sources and KI inhibitory synapses from the local network. See Aviel 
et al [9] for details. All synapses of each group will be given fixed values. It is 
allowed for one pre-synaptic neuron to make more than one connection to one post-
synaptic neuron. The network possesses NE excitatory neurons and EI NN γ≡  

inhibitory neurons. Connectivity is sparse, ε== IIE NKNEK , (we use 
1.0=ε ). A Poisson process with rate vext=10Hz models the external source. If a 



 

neuron of population y innervates a neuron of population x its synaptic strength  
is defined as 

xyJ

                        0J J KxE E≡ , 0J gJ KxI ≡ − I   

with J0=10, and g=5. Note that xE
g

xI JJ
γ

−= , hence 
γ

g  controls the balance 

between the two populations. 

Within an HCA pattern the neurons have high connection probability with one 
another. Here it is achieved by requiring L of the synapses of a neuron in the 
excitatory pattern to originate from within the pattern. Similarly, a neuron in the 
inhibitory shadow pattern dedicates L of its synapses to the associated excitatory 
pattern. In a SFC, each neuron in an excitatory pool is fed by L neurons from the 
previous pool. This forms a feed forward connectivity. In addition, when shadow 
pools are present, each neuron in a shadow pool is fed by L neurons from its 
associated excitatory pool.  

In both cases EL KCL = , with CL=2.5. The size of the excitatory patterns (i.e. 
the number of neurons participating in a pattern) or pools, nE, is also chosen to be 
proportional to EK  (see Aviel et al. 2003 [9]), EnE KCn ≡ , where  varies. 
This is a suitable choice, because of the behavior of the critical n

nC
c of Eq. (1), and is 

needed for the meaningful memory activity (of the HCA or SFC) to overcome 
synaptic noise. 

The size of a shadow pattern is defined as EI ndn ~
≡ . This leads to the factor d, 

representing the relative strength of inhibitory and excitatory currents, due to a 
pattern or pool, affecting a neuron that is connected to both:  

(2) 0

0

gJ K dJ n gdExI Id
J n J KxE E I γ

−
≡ = = .  

Thus it fixes ( ) EgI ndn γ= .  In the simulations reported below d varied between 1 
and 3. 

Wiring the network is done in two stages, first all excitatory patterns are wired, and 
then random connections are added, complying with the fixed number of synapses. 

A volley of w spikes, normally distributed over time with width of 1ms, is used to 
ignite a memory pattern. In the case of SFC, the first pool is ignited, and under the 
right conditions the volley propagates along the chain without fading away and 
without destabilizing the AS. 

3 .2  Resu l t s  

First we show that the AS remains stable when embedding HCAs in a small DBN, 
whereas global oscillations take place if embedding is done without shadow pools. 
Figure 1 displays clearly the sustained activity of an HCA in the DBN.  



 

The same principle also enables embedding of SFCs in a small network. This is to 
be contrasted with the conclusions drawn in Aviel et al [9], where it was shown that 
otherwise very large networks are necessary to reach this goal. 

 
Figure 1: HCAs are embedded in a balanced network without (left) and with (right) 
shadow patterns. P=300 HCAs of size nE=194 excitatory neurons were embedded in 
a network of NE=15,000 excitatory neurons. The eleventh pattern is externally 
ignited at time t=100ms. A raster plot of 200ms is displayed. Without shadow 
patterns the network exhibits global oscillations, but with shadow patterns the 
network exhibits only minute oscillations, enabling the activity of the ignited 
pattern to be sustained. The size of the shadow patterns is set according to Eq. (2) 
with d=1. Neurons that participate in more than one HCA may appear more than 
once on the raster plot, whose y-axis is ordered according to HCAs, and represents 
every second neuron in each pattern. 

 
Figure 2: SFCs embedded in a balanced network without (left) and with (right) 
shadow patterns.  The first pool is externally ignited at time t=100ms. d=0.5. The 
rest of the parameters are as in Figure 1. Here again, without shadow pools, the 
network exhibits global oscillations, but with shadow pools it has only minute 
oscillation, enabling a stable propagation of the synfire wave. 

3 .3  Maximum Capac i ty  

In this section we show that, within our DBN, it is the fixed number of synapses 
(rather than dynamical constraints) that dictates the maximal number of patterns or 
pools P that may be loaded onto the network. Let us start by noting that a neuron of 
population x (E or I) can participate in at most  LKm E≡  patterns, hence  mN x



 

sets an upper bound on the number of neurons that participate in all patterns: 

. Next, defining xx NmPn ⋅≤
P

x Nx
α ≡ , we find that 

x xα

dDx ≡

γα

(P C C Dn L I=

(3) 
K C Km E L E

x n nx x
α ≤ =

     

To leading order in NE this turns into 

(4) ( ) ( )1K C KE L EN N C C D Nn xE L ED C Kx n E

−
= = −
    O NE

where ( )γg  if x=I, or 1 for x=E. 

Thus we conclude that synaptic combinatorial considerations lead to a maximal 
number of patterns P. If DI<1, including the case DI=0 of the SBN, the excitatory 
neurons determine the limit to be ( ) ELn NCCP 1−= . If, as is the case in our DBN, 

DI>1, then EI α<

) 1
NE

−
 and the inhibitory neurons set the maximum value to 

.  

For example, setting Cn=3.5, CL=2.4, g=3 and d=3, in Eq. (4), we get P=0.06NE. In 
Figure 3 we use these parameters. The capacity of a DBN is compared to that of an 
SBN for different network sizes. The maximal load is defined by the presence of 
global oscillation strong enough to prohibit sustained activity of patterns. The DBN 
reaches the combinatorial limit, whereas the SBN does not increase with N and 
obviously does not reach its combinatorial limit. 

 

 

 

 

 

 

 

 

Figure 3: A balanced network maximally loaded with HCAs. Left: A raster plot of a 
maximally loaded DBN. P=408, NE=6,000. At time t=450ms, the seventh pattern is 
ignited for a duration of 10ms, leading to termination of another pattern's activity 
(upper stripe) and to sustained activity of the ignited pattern (lower stripe). Right: 
P(NE) as inferred from simulations of a SBN ("o") and of a DBN ("*").  The DBN 
realizes the combinatorial limit (dashed line) whereas the SBN does not realize its 
limit (solid line). From this comparison it is clear that DBN is superior to the SBN 
in terms of network capacity. 
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The simulations displayed in Figure 3 show that in the DBN the combinatorial P is 
indeed realized, and the capacity of this DBN grows like 0.06NE. In the SBN, 
dynamic interference prevents reaching the combinatorial limit. 

We have tried, in many ways, to increase the capacity of SBN. Recently, we have 
discovered [11] that only if the external rates are appropriately scaled, then SBN 
capacity can be linear with NE with a pre-factor α  almost as high as that of a DBN. 
Although under these conditions SBNs can have large capacity, we emphasize that 
DBNs posses a clear advantage. Their structure guarantees high capacity under more 
general conditions. 

4  Discussion 

In this paper we study memory patterns embedded in a balanced network of spiking 
neurons. In particular, we focus on the maximal capacity of Hebbian cell 
assemblies. Requiring stability of the asynchronous state of the network, that serves 
as the background for memory activity, and further assuming that the neuronal 
spiking process is noise-driven, we show that naively applying Hebb's architecture 
leads to global oscillations. We propose the double-balance principle as the solution 
to this problem. This double-balance is obtained by introducing shadow patterns, i.e. 
inhibitory patterns that are associated with the excitatory ones and fed by them, but 
do not have specific connectivity other than that. 

The maximal load of our system is determined in terms of the available synaptic 
resources, and is proportional to the size of the excitatory population, NE. For the 
parameters used here it turns out to be P=0.06NE. This limit was estimated by a 
combinatorial argument of synaptic availability, and shown to be realized by 
simulations. 

Synfire chains were also studied. DBNs allow for their embedding in relatively 
small networks, as shown in . Previous studies have shown that their 
embedding in balanced networks without shadow pools require network sizes larger 
by an order of magnitude [9]. The capacity P of a SFC is defined, in analogy with 
the HCA case, as the number of pools embedded in the network. In this case we 
cannot realize the theoretical limit in simulations. We believe that the feed-forward 
structure of the SFC, which is absent in HCA, introduces further dynamical 
interference. The feed-forward structure can amplify correlations and firing rates 
more efficiently than the feedback structure within patterns of the HCA. Thus a 
network embedded with SFCs may be more sensitive to spontaneously evolved 
correlations than a network embedded with HCAs. 

Figure 2

It is interesting to note that the addition of shadow patterns has an analogy in the 
Hopfield model [5], where neurons in a pattern have both excitatory and inhibitory 
couplings with the rest of the network. One may claim that the architecture proposed 
here recovers the same effect via the shadow patterns. Accommodating the Hopfield 
model in networks of spiking neurons was tried before [3, 4] without specific 
emphasis on the question of capacity. In Gerstner and van Hemenn [4] the synaptic 
matrix is constructed in the same way as in the Hopfield model, i.e. neurons can 
have excitatory and inhibitory synapses. In [3, 8] the synaptic bonds of the Hopfield 
model were replaced by strong excitatory connections within a pattern, and weak 
excitatory connections among neurons in a patterns and those outside the pattern. 
While the different types of connection are of different magnitude, they are all 
excitatory. In contrast, here, excitation exists within a pattern as well as outside it, 
but the pattern has a well-defined inhibitory effect on the rest of the network, 
mediated by the shadow pattern. The resulting inhibitory correlated currents cancel 
the excitatory correlated input. Since the firing process in a BN is driven by 



 

fluctuations, it seems that negating excitatory correlations by inhibitory ones is 
more akin to Hopfield's construction in a network of two populations.  

Hertz [12] has argued that a capacity limit obtained in a network of integrate-and-
fire neurons should be multiplied by 2/τ  to compare it with a network of binary 
neurons. Hence the 12.0=α  obtained here, is equivalent to 6.0=α  in a binary 
model. It is not surprising that the last number is higher than 0.14, the limit of the 
original Hopfield model, since our model is sparse, as, e.g. the Tsodyks-Feigelman 
[7] model, where larger capacities were achieved. 

Finally, let us point out again that whereas only DBNs can reach the combinatorial 
capacity limit under the conditions specified in this paper, we have recently 
discovered [11] that SBN can also reach this limit if additional scaling conditions 
are imposed on the input. The largest capacities that we obtained under these 
conditions were of order 0.1. 
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