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Abstract

We address the problem of learning a symmetric positive definite matrix.
The central issue is to design parameter updates that preserve positive
definiteness. Our updates are motivated with\tba Neumanriver-
gence. Rather than treating the most general case, we focus on two key
applications that exemplify our methods: On-line learning with a simple
square loss and finding a symmetric positive definite matrix subject to
symmetric linear constraints. The updates generalize the Exponentiated
Gradient (EG) update and AdaBoost, respectively: the parameter is now
a symmetric positive definite matrix of trace one instead of a probability
vector (which in this context is a diagonal positive definite matrix with
trace one). The generalized updates use matrix logarithms and exponen-
tials to preserve positive definiteness. Most importantly, we show how
the analysis of each algorithm generalizes to the non-diagonal case. We
apply both new algorithms, called tiMdatrix Exponentiated Gradient
(MEG) update andefiniteBoostto learn a kernel matrix from distance
measurements.

1 Introduction

Most learning algorithms have been developed to learacior of parameters from data.
However, an increasing number of papers are now dealing with more structured parame-
ters. More specifically, when learning a similarity or a distance function among objects,
the parameters are defined asyanmetric positive definite matriRat serves as a kernel

(e.g. [14, 11, 13]). Learning is typically formulated as a parameter updating procedure to
optimize aoss function The gradient descent update [6] is one of the most commonly used
algorithms, but it is not appropriate when the parameters form a positive definite matrix,
because the updated parameter is not necessarily positive definite. Xing et al. [14] solved
this problem by always correcting the updated matrix to be positive. However no bound
has been proven for this update-and-correction approach. In this paper, we introduce the
Matrix Exponentiated Gradient updatehich works as follows: First, the matrix logarithm

of the current parameter matrix is computed. Then a step is taken in the direction of the
steepest descent. Finally, the parameter matrix is updated to the exponential of the modified
log-matrix. Our update preserves symmetry and positive definiteness because the matrix
exponential maps any symmetric matrix to a positive definite matrix.



Bregman divergences play a central role in the motivationth@ednalysis obn-line learn-

ing algorithmg[5]. A learning problem is essentially defined by a loss function, and a di-
vergence that measures the discrepancy between parameters. More precisely, the updates
are motivated by minimizing the sum of the loss function and the Bregman divergence,
where the loss function is multiplied by a positive learning rate. Different divergences lead
to radically different updates [6]. For example, the gradient descent is derived from the
squared Euclidean distance, and the exponentiated gradient from the Kullback-Leibler di-
vergence. We use then Neumanmlivergence (also called quantum relative entropy) for
measuring the discrepancy between two positive definite matrices [8]. We derive a new
Matrix Exponentiated Gradient updafeom this divergence (which is a Bregman diver-
gence for positive definite matrices). Finally we proghative loss boundasing thevon
Neumanrdivergence as a measure of progress.

Also the following related key problem has received a lot of attention recently [14, 11,
13]: Find a symmetric positive definite matrix that satisfies a number of symmetric linear
inequality constraints. The nelefiniteBoosalgorithm greedily chooses the most violated
constraint and performs an approximated Bregman projection. In the diagonal case, we
recover AdaBoost [9]. We also show how the convergence proof of AdaBoost generalizes
to the non-diagonal case.

2 von NeumannDivergence or Quantum Relative Entropy

If F is a real convex differentiable function on the parameter domain (symmkttic
positive definite matrices) arf{fW) := VF(W), then the Bregman divergence between

two parameterg?\/f andW is defined as
Ap(W, W) = F(W) — F(W) — tr[(W — W)f(W)].

When choosin@' (W) = tr(W log W — W), thenf (W) = log W and the corresponding
Bregman divergence becomes tlem Neumanuivergence [8]:

Ap(W, W) = tr(WlogW — WlogW — W + W). 1)

In this paper, we are primarily interested in the normalized case (wi®) = 1). In this
case, the positive symmetric definite matrices are related to density matrices commonly

used in Statistical Physics and the divergence S|mpI|f|eSPt(>W W) = tr(W 1ogW —
W log W).

IfTW=>", )\iviviT is our notation for the eigenvalue decomposition, then we can rewrite
the normalized divergence as

Ap(W, W) Z/\ In \; +Z/\ In (8, v;)2.

So this divergence quantifies the difference in the eigenvalues as well as the eigenvectors.

3 On-line Learning

In this section, we present a natural extension of Exponentiated GradientEG) up-
date [6] to an update for symmetric positive definite matrices.

At the t-th trial, the algorithm receives a symmetric instance maXjxe R?*<. |t then
produces a predictiofy = tr(W;X,) based on the algorithm’s current symmetric positive
definite parameter matri¥;. Finally it incurs for instancea quadratic los$j; — y:)?,

For the sake of simplicity, we use the simple quadratic l0Bs(W) = (tr(X;W) — y;)°.
For the general update, the gradi@nt.(W;) is exponentiated in the update (4) and this gradient
must be symmetric. Following [5], more general loss functions (based on Bregman divergences) are
amenable to our techniques.



and updates its parameter mafil;. In the update we aim to solve the following problem:

W1 = argming (AF(W, W) + n(tr(WX,) — yt)z) , (2)
where the convex functioR defines the Bregman divergence. Setting the derivative with
respect tow to zero, we have

F(Wii1) = £(Wo) + 0V [(tr(We1Xy) = 5:)%] = 0. 3)

The update rule is derived by solving (3) with respectitp,,, but it is not solvable in
closed form. A common way to avoid this problem is to approximat®;,,X;) by
tr(WX;) [5]. Then, we have the following update:

Wi = £ E(Wy) — 20(9 — ye) Xs).

In our caseF(W) = tr(WlogW — W) and thusf(W) = logW andf~}(W) =
exp W. We also augment (2) with the constrainfW) = 1, leading to the following
Matrix Exponential Gadient (MEG) Update

1 A
Wi = 7 exp(log Wi — 2n(9: — y:)X4), 4)

where the normalization factdt; is tr[exp(log W — 2n(g: — y:)X;)]. Note that in the
above update, the exponéog W, — 2n(j: — y:+)X; is an arbitrary symmetric matrix and
the matrix exponential converts this matrix back into a symmetric positive definite matrix.
A numerically stable version of the MEG update is given in Section 3.2.

3.1 Relative Loss Bounds

We now begin with the definitions needed for the relative loss bounds. SLet
(X1,41),-- -, (Xp,yr) denote a sequence of examples, where the instance ma&rjces
R?*4 are symmetric and the labejs € R. For any symmetric positive semi-definite ma-

trix U with tr(U) = 1, define its total loss a5y (5) = Z;‘F:l(tr(UXt) —y;)?. The total

loss of the on-line algorithm i yy g (S) = ZtT:l(tr(WtXt) — y;)?. We prove a bound

on therelative 10SSL ) g (S) — Ly (S) that holds for anyJ. The proof generalizes a sim-

ilar bound for the Exponentiated Gradient update (Lemmas 5.8 and 5.9 of [6]). The relative
loss bound is derived in two steps: Lemma 3.1 bounds the relative loss for an individual
trial and Lemma 3.2 for a whole sequence (Proofs are given in the full paper).

Lemma 3.1 Let W, be any symmetric positive definite matrix. D&t be any symmetric
matrix whose smallest and largest eigenvalues sali$fif — A\™* < r. ASSUMEW ;IS
produced fromW, by the MEG update and I&F be any symmetric positive semi-definite
matrix. Then for any constantsandb such that) < a < 2b/(2 + 72b) and any learning
raten = 2b/(2 + r?b), we have

a(ys —tr(WX))? — by — tr(UXy))? < A(U,W;) — A(U, Wyyq) (5)

In the proof, we use the Golden-Thompson inequality [3], itelexp(A + B)] >
tr[exp(A) exp(B)] for symmetric matrices\ andB. We also needed to prove the fol-
lowing generalization of Jensen’s inequality to matricesp(p1 A + p2(I — A)) <
exp(p1)A + exp(p2)(I — A) for finite p1,p2 € R and any symmetric matriA with

0 < A < 1. These two key inequalities will also be essential for the analysiefihite-
Boostin the next section.

Lemma 3.2 LetW; andU be arbitrary symmetric positive definite initial and comparison
matrices, respectively. Then for aaguch that) = 2¢/(r?(2 + ¢)),

Lupa(S) < (1+5) Lu($) + (% + 1) r?A(U, W1). (6)



Proof For the maximum tightness of (5), should be chosen as= n = 2b/(2 + r%b).
Letb = ¢/r?, and thus: = 2¢/(r%(2 + ¢)). Then (5) is rewritten as

S~ (WX = ey — (UX0)? < (AU, We) — AU, Wis))
Adding the boundsfor=1,--- , T, we get

S Larpa(S) — cLu(S) < (AU, W1) — AU Wii)) < PAU, W),
which is equivalent to (6). |

AssumingLy (S) < lmax andA(U, W1) < dnax, the bound (6) is tightest when=
2/ I Then we haveyrpc(S) — Lu(S) < v/ 2mantmas + 5 A(U, W1).

3.2 Numerically stable MEG update

The MEG update is numerically unstable when the eigenvalud¥ pfare around zero.
However we can “unwrapW,; as follows:

t
1 N
Wit = = exp(ed +log Wi =20} (3 = 9:)X,), @)
t

s=1

where the constarff; normalizes the trace V., to one. As long as the eigen values of
‘W, are not too small then the computatiori@f W, is stable. Note that the update is inde-
pendent of the choice @f € R. We incrementally maintain an eigenvalue decomposition
of the matrix in the exponen&(n?) per iteration):

t
ViA V] =X +1og Wi — 27 (i — ys) Xo),

s=1

where the constant is chosen so that the maximum eigenvalue of the above is zero. Now
Wt+1 = Vt exp(At)VtT/tr(eXp(At))

4 Bregman Projection andDefiniteBoost
In this section, we address the following Bregman projection problem
W* = argming Ar(W, Wy), tr(W) = 1,tr(WC;) <0, forj=1,...,n, (8)

where the symmetric positive definite math¥; of trace one is the initial parameter ma-
trix, andCy, ..., C, are arbitrary symmetric matrices. Prior knowledge abBduis en-

coded in the constraints, and the matrix close3Mg is chosen among the matrices satis-
fying all constraints. Tsuda and Noble [13] employed this approach for learning a kernel
matrix among graph nodes, and this method can be potentially applied to learn a kernel
matrix in other settings (e.g. [14, 11]).

The problem (8) is a projection 8V to the intersection of convex regions defined by the
constraints. It is well known that the Bregman projection into the intersection of convex
regions can be solved by sequential projections to each region [1]. In the original papers
only asymptotic convergence was shown. More recently a connection [4, 7] was made to
the AdaBoost algorithm which has an improved convergence analysis [2, 9]. We generalize
the latter algorithm and its analysis to symmetric positive definite matrices and call the new
algorithmDefiniteBoostAs in the original setting, onlgpproximateprojections (Figure 1)

are required to show fast convergence.

2Note that if7 is large then the on-line update (2) becomes a Bregman projection subject to a
single equality constraint(WX;) = y:.



Figure 1: In (exact) Bregman projections, the intersection
of convex sets (i.e., two lines here) is found by iterating pro-
jections to each set. We project only approximately, so the
projected point does not satisfy the current constraint. Nev-
ertheless, global convergence to the optimal solution is guar-
Exact anteed via our proofs.
Proj ection

Appr oxi mat e
Proj ection

7
Before presenting the algorithm, let us derive the dual problem of (8) by means of Lagrange
multipliers-,

~* = argmin, log | tr | exp(log W1 — Z%-Cj) , v = 0. (9)

j=1

See [13] for a detailed derivation of the dual problem. When (8) is feasible, the opti-

mal solution is described 8 = L exp(log W1 — > =17 Cy), whereZ(y*) =

()
tr[exp(log Wy — >0, 75 C;)].
4.1 Exact Bregman Projections

First, let us present the exact Bregman projection algorithm to solve (8). We start from
the initial parameteW;. At the ¢-th step, the most unsatisfied constraint is chosen,
Ji = argmax;_; .., tr(W,C;). Let us useC; as the short notation faC;,. Then, the
following Bregman projection with respect to the chosen constraint is solved.

Wit = argming AW, Wy), tr(W) =1,tr(WGC;) < 0. (10)
By means of a Lagrange multiplier, the dual problem is described as
oy = argmin,, trexp(log Wy — aCy)], «a > 0. (11)

Using the solution of the dual problei; is updated as

1
Wt+1 = m exp(log Wt — otht) (12)

where the normalization factor % (a;) = tr[exp(log W; — «;C;)]. Note that we can use
the same numerically stable update as in the previous section.

4.2 Approximate Bregman Projections

The solution of (11) cannot be obtained in closed form. However, one can use the following

approximate solution:

1 1 max

= . 1og< /A > (13)
/\Irsnax _ /\zrfmn 1 + ,r.t/)\inln

when the eigenvalues @, lie in the intervall A, A\l"®x] andr, = tr(W;C;). Since the
most unsatisfied constraint is chosen> 0 and thusn, > 0. Although the projection is
done only approximatelythe convergence of the dual objective (9) can be shown using
the following upper bound.

3The approximate Bregman projection (with as in (13) can also be motivated as an online
algorithm based on an entropic loss and learning rate one (following Section 3 and [4]).



Theorem 4.1 The dual objectivg9) is bounded as

n T
tr |exp | log W, — Z'}/jcj < Hp(rt) (14)
j=1 t=1

\max _amin
t _ —t
/rt )\%na.)(i)\?]ln Tt )\?laxiklgnn
wherep(r;) = [ 1 — — 1- — .
Amax )\mln
t t

The dual objective is monotonically decreasing, becauigsg < 1. Also, sincer; corre-
sponds to the maximum value among all constraint violations”_,, we havep(r;) = 1

only if , = 0. Thus the dual objective continues to decrease until all constraints are
satisfied.

4.3 Relation to Boosting

When all matrices are diagonal, the DefiniteBoost degenerates to AdaBoost [9]: Let
{mi,yi};i:l be the training samples, where; € R™ andy, € {-1,1}. Let
hi(z),..., hn(z) € [—1,1] be the weak hypotheses. For tfi¢th hypothesisi;(z), let

us deﬁneC = diag(yih;(x1), ..., yah;(za)). Sincelyh;(x)| < 1, A"/ ™" = £1 for

anyt. Settmng = 1/d, the dual objectlve (14) is rewritten as

ézexp —in%‘hj(CCi) :
i=1 =1

which is equivalent to the exponential loss function used in AdaBoost. $inandW;
are diagonal, the matri¥’; stays diagonal after the updatelf; = [W];;, the updating
formula (12) becomes the AdaBoost update; 1 ; = wy; exp(—aeyihe(z;:))/Zi (o). The

approximate solution af, (13) is described as;, = 1 5 log 1= 1*” , wherer, is the weighted
training error of the-th hypothesis, i.ex;, = Zle wmyzht(:vz).

5 Experiments on Learning Kernels

In this section, our technique is applied to learning a kernel matrix from a set of distance
measurements. This application is not on-line per se, but it shows nevertheless that the
theoretical bounds can be reasonably tight on natural data.

WhenK is ad x d kernel matrix among objects, then thé(;; characterizes the similarity
between objectsand;. In the feature spacés;; corresponds to the inner product between
objecti andj, and thus the Euclidean distance can be computed from the entries of the
kernel matrix [10]. In some cases, the kernel matrix is not given explicitly, but only a set

of distance measurements is available. The data are represented either as (i) quantitative
distance values (e.qg., the distance betweand; is 0.75), or (ii) qualitative evaluations

(e.g., the distance betweéand; is small) [14, 13]. Our task is to obtain a positive definite
kernel matrix which fits well to the given distance data.

On-line kernel learning  In the first experiment, we consider the on-line learning scenario

in which only one distance example is shown to the learner at each time step. The distance
example at time is described a$ay, b, y: }, which indicates that the squared Euclidean
distance between objecetsandb, is y;. Let us define a time-developing sequence of kernel
matrices a{W,}~_,, and the corresponding points in the feature spacgrag? , (i.e.

[Wi]as = z,x). Then, the total loss incurred by this sequence is

T T
S (1w, = a2 = 90 = (0 (WiX0) = )2,
t=1 t=1
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Figure 2: Numerical results of on-line learning. (Left) idtsss against the number of iterations. The
dashed line shows the loss bound. (Right) classification error of the nearest neighbor classifier using
the learned kernel. The dashed line shows the error by the target kernel.

whereX; is a symmetric matrix whosgu., a;) and (b, b;) elements are 0.4, ;) and

(b, a+) elements are -0.5, and all the other elements are zero. We consider a controlled
experiment in which the distance examples are created from a kizoget kernel matrix

We used &2 x 52 kernel matrix amongyyr B proteins of bacteriad = 52). This data
contains three bacteria species (see [12] for details). Each distance example is created
by randomly choosing one element of the target kernel. The initial parameter was set as
W; = I/d. When the comparison matriX is set to the target matrix,;;(S) = 0 and

lmax = 0, because all the distance examples are derived from the target matrix. Therefore
we choose learning rate = 2, which minimizes the relative loss bound of Lemma 3.2.

The total loss of the kernel matrix sequence obtained by the matrix exponential update is
shown in Figure 2 (left). In the plot, we have also shown the relative loss bound. The
bound seems to give a reasonably tight performance guarantee—it is about twice the actual
total loss. To evaluate the learned kernel matrix, the prediction accuracy of bacteria species
by the nearest neighbor classifier is calculated (Figure 2, right), where the 52 proteins are
randomly divided into 50% training and 50% testing data. The value shown in the plot

is the test error averaged over 10 different divisions. It took a large number of iterations
(~ 2 x 10°) for the error rate to converge to the level of the target kernel. In practice one
can often increase the learning rate for faster convergence, but here we chose the small rate
suggested by our analysis to check the tightness of the bound.

Kernel learning by Bregman projection Next, let us consider a batch learning sce-
nario where we have a set of qualitative distance evaluations (i.e. inequality constraints).
Givenn pairs of similar objectsa;,b;}7_,, the inequality constraints are constructed
as||x,; —xp,|| < 7,5 = 1,...,n, wherey is a predetermined constant. X; is de-

fined as in the previous section aly = X; — ~I, the inequalities are then rewritten as
tr(WC;) < 0,5 = 1,...,n. The largest and smallest eigenvalues of @hyarel — ~y

and—~, respectively. As in the previous section, distance examples are generated from the
target kernel matrix betweegyr B proteins. Settingy = 0.2/d, we collected all object

pairs whose distance in the feature space is lesstltatyield 980 inequalitiesr{ = 980).

Figure 3 (left) shows the convergence of the dual objective function as proven in Theo-
rem 4.1. The convergence was much faster than the previous experiment, because, in the
batch setting, one can choose the most unsatisfied constraint, and optimize the step size as
well. Figure 3 (right) shows the classification error of the nearest neighbor classifier. As
opposed to the previous experiment, the error rate is higher than that of the target kernel
matrix, because substantial amount of information is lost by the conversion to inequality
constraints.
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Figure 3: Numerical results of Bregman projection. (Lefthagrgence of the dual objective function.
(Right) classification error of the nearest neighbor classifier using the learned kernel.

6 Conclusion

We motivated and analyzed a new update for symmetric positive matrices usimgrthe
Neumanrdivergence. We showed that the standard bounds for on-line learning and Boost-
ing generalize to the case when the parameters are a symmetric positive definite matrix (of
trace one) instead of a probability vector. As in quantum physics, the eigenvalues act as
probabilities.
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