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Abstract

Active learning is the problem in supervised learning to design the loca-
tions of training input points so that the generalization error is minimized.
Existing active learning methods often assume that the model used for
learning is correctly specified, i.e., the learning target function can be ex-
pressed by the model at hand. In many practical situations, however, this
assumption may not be fulfilled. In this paper, we first show that the ex-
isting active learning method can be theoretically justified under slightly
weaker condition: the model does not have to be correctly specified, but
slightly misspecified models are also allowed. However, it turns out that
the weakened condition is still restrictive in practice. To cope with this
problem, we propose an alternative active learning method which can be
theoretically justified for a wider class of misspecified models. Thus,
the proposed method has a broader range of applications than the exist-
ing method. Numerical studies show that the proposed active learning
method is robust against the misspecification of models and is thus reli-
able.

1 Introduction and Problem Formulation

Let us discuss the regression problem of learning a real-valued fungiondefined on
R4 from training examples

{(wia yl) | Yi = f(wz) + Ei}?:la
where{e; }7_, are i.i.d. noise with mean zero and unknown variamte We use the fol-
lowing linear regression model for learning.

fla) =3 aipile),

where{p;(=)}/_, are fixed linearly independent functions and= (a1, as,...,a,)"
are parameters to be learned.

We evaluate the goodness of the learned funcfige) by the expected squared test error
over test input points and noise (i.e., tpeneralization erro)y. When the test input points
are drawn independently from a distribution with densgit ), the generalization error is
expressed as

G =T, / (f(az) _ f(az))zpt(az)daz,



wherelF. denotes the expectation over the ndisg’_, . In the following, we suppose that
pe () is knownt.

In a standard setting of regression, the training input points are provided from the environ-
ment, i.e.{x;}!_, independently follow the distribution with density(x). On the other

hand, in some cases, the training input points can be designed by users. In such cases,
it is expected that the accuracy of the learning result can be improved if the training input
points are chosen appropriately, e.g., by densely locating training input points in the regions
of high uncertainty.

Active learning—also referred to asxperimental desigs-is the problem of optimizing the
location of training input points so that the generalization error is minimized. In active
learning research, it is often assumed that the regression model is correctly specified [2,
1, 3], i.e, the learning target functigf(x) can be expressed by the model. In practice,
however, this assumption is often violated.

In this paper, we first show that the existing active learning method can still be theoreti-
cally justified when the model is approximately correct in a strong sense. Then we propose
an alternative active learning method which can also be theoretically justified for approx-
imately correct models, but the condition on the approximate correctness of the models is
weaker than that for the existing method. Thus, the proposed method has a wider range of
applications.

In the following, we suppose that the training input poifits }7_, are independently drawn
from a user-defined distribution with density(z), and discuss the problem of finding the
optimal density function.

2 Existing Active Learning Method

The generalization erraF defined by Eq.(1) can be decomposed as
G=B+V,
whereB is the (squareddiasterm andV’ is thevarianceterm given by

b= [ (5fw) @) peye and V=i [ (f@)-Bf@) e

A standard way to learn the parameters in the regression model (1) asdinary least-
squares learning.e., parameter vectat is determined as follows.

n

aors = afg;niﬂ [Z (f(wz) - yi)zl .

i=1
It is known thatao 1 5 is given by
aors = Lorsy,
where
I v Tyr—1yT _ _ T
ors = (X X)7'X ', X;;=9;(x:), and y=(y1,y2,...,¥n) -

Let Gors, Bors andVors be G, B andV for the learned function obtained by the
ordinary least-squares learning, respectively. Then the following proposition holds.

'In some application domains such as web page analysis or bioinformatics, a large number of
unlabeled samplesinput points without output values independently drawn from the distribution
with densityp, (x)—are easily gathered. In such cases, a reasonably good estimate:pimay
be obtained by some standard density estimation method. Therefore, the assumptiputhat
known may not be so restrictive.



Proposition 1 ([2, 1, 3]) Suppose that the model is correctly specified, i.e., the learning
target functionf(«) is expressed as

fa) =Y aipile).

ThenBors andVops are expressed as
2
Bors =0 and Vors =c*Jors,

where

Jors =tr(ULorsL;s) and U ; = /soi(w)soj(w)pt(w)dw

Therefore, for the correctly specified model (1), the generalization €K is expressed
as
Gors = c*Jors.
Based on this expression, the existing active learning method determines the location of
training input points{x; }?_, (or the training input density,, («)) so that/or s is mini-
mized [2, 1, 3].

3 Analysis of Existing Method under Misspecification of Models
In this section, we investigate the validity of the existing active learning method for mis-
specified models.

Suppose the model does not exactly include the learning target furydtion but it ap-
proximatelyincludes it, i.e., for a scalar such tha{s| is small,f (x) is expressed as

f(®) = g(x) + or(=),

where g(z) is the orthogonal projection of (x) onto the span of ;(x)}’_, and the
residualr(z) is orthogonal to{; (=) }!_;:

g(z) = Zp:a;‘goi(az) and /r(az)gpi(az)pt(az)daz =0 fori=1,2,... p.
i=1
In this case, the bias term is expressed as
B= [ (Eflw) - gt@) ple)do+C. where €= [ (g(a)  fla)’ p(e)de.
SinceC' is constant which does not depend on the training input densfty), we subtract

C' in the following discussion.
Then we have the following lemra

Lemma 2 For the approximately correct model (3), we have
Bors —C =6*({ULorszr, Lorsz,) = O(6%),
Vors = 0”Jors = Op(n™1),

where
zp = (r(®1), r(®2), .. .,r(azn))T.

2Proofs of lemmas are provided in an extended version [6].



Note that the asymptotic order in Eq.(1) is in probabilitycgiivs 1 s is a random variable
that includes{«; }7_, . The above lemma implies that

Gors — C =0"Jors +op(n~") if6=o0,(n"7).
Therefore, the existing active learning method of minimizifag. ¢ is still justified if § =
o,(n~%). However, wher # o,(n~ %), the existing method may not work well because

the bias termBo s — C' is not smaller than the variance tef; ¢, So it can not be
neglected.

4 New Active Learning Method

In this section, we propose a new active learning method based on the weighted least-
squares learning.

4.1 Weighted Least-Squares Learning

When the model is correctly specifietlo 1, s is an unbiased estimator af. However, for
misspecified modelsgyo s is generally biased even asymptotically i O, (1).

The bias ofao 15 is actually caused by theovariate shiff5]—the training input density
pe(2) is different from the test input densip(«). For correctly specified models, in-
fluence of the covariate shift can be ignored, as the existing active learning method does.
However, for misspecified models, we should explicitly cope with the covariate shift.

Under the covariate shift, it is known that the followingighted least-squares learniigy
asymptotically unbiased evendf= O, (1) [5].

awrs = argfliﬂ [Zn: pt(mi) (f(wz) - yi)zl .

i=1 px(ml)

Asymptotic unbiasedness &fy 1, s would be intuitively understood by the following iden-
tity, which is similar in spirit toimportance sampling

[ (7@ = 1) nizide = [ (Flw) = @) 25 ()

In the following, we assume that («) is strictly positive for alke. Let D be the diagonal
matrix with thei-th diagonal element

Pt(ﬂfz’)
px(wz)
Then it can be confirmed thaty 1 s is given by
aWwrLs = Lwrsy, where Lwrs= (XTDX)_lXTD.

D;; =

4.2 Active Learning Based on Weighted Least-Squares Learning

Let Gwrs, Bwrs andViyrs be G, B andV for the learned function obtained by the
above weighted least-squares learning, respectively. Then we have the following lemma.

Lemma 3 For the approximately correct model (3), we have
Bwrs —C =6*(ULwprsz,, Lwrsz,) = O,(6*n™1),
Vives = o2 Jwirs = Op(n™1),

where T
Jwrs =tr(ULwrsLy ).



This lemma implies that
Gwrs —C = U'ZJWLS + Op(n_l) if 6§ = Op(l).

Based on this expression, we propose determining the training input depgity so that
Jwrs IS minimized.

The use of the proposed criteriofy s can be theoretically justified wheh= o, (1),

while the existing criterion/o s requiresd = op(n—%). Therefore, the proposed method
has a wider range of applications. The effect of this extension is experimentally investigated
in the next section.

5 Numerical Examples
We evaluate the usefulness of the proposed active learning method through experiments.

Toy Data Set: We first illustrate how the proposed method works under a controlled
setting.

Letd = 1 and the learning target functigifz) be f(z) = 1 — z + 2 + §z>. Letn = 100
and{¢; }129 be i.i.d. Gaussian noise with mean zero and standard deviatiohet p; («)
be the Gaussian density with me@2 and standard deviatiadh4, which is assumed to be
known here. Lep = 3 and the basis functions ke (z) = zi~! fori = 1,2,3. Let us
consider the following three cases= 0, 0.04, 0.5, where each case correspondsdor*
rectly specifiet] “ approximately corre¢t and “misspecifiet! (see Figure 1). We choose
the training input density,.(#) from the Gaussian density with mear2 and standard
deviation0.4¢, where

¢=0.8,09,1.0,...,2.5.

We compare the accuracy of the following three methods:

(A) Proposed active learning criterion + WLS learning : The training input density is
determined so thaty 1 s is minimized. Following the determined input density,
training input pointg x; } 129 are created and corresponding output vafues! 2}
are observed. Then WLS learning is used for estimating the parameters.

(B) Existing active learning criterion + OLS learning [2, 1, 3]: The training input den-
sity is determined so thal, . s is minimized. OLS learning is used for estimating
the parameters.

(C) Passive learning + OLS learning: The test input density; («) is used as the training
input density. OLS learning is used for estimating the parameters.

First, we evaluate the accuracy.ff ;s andJo ¢ as approximations @y 1 s andGoprs.
The means and standard deviation&:of 1. s, Jwrs, Gors, andJors over 100 runs are
depicted as functions aof in Figure 2. These graphs show that whes- 0 (“correctly
specified), both Jy s and Jor s give accurate estimates 6fyy s andGors. When
d = 0.04 (“approximately corre¢), Jwrs again works well, while/o1s tends to be
negatively biased for large This result is surprising since as illustrated in Figure 1, the
learning target functions with = 0 andé = 0.04 are visually quite similar. Therefore,
it intuitively seems that the result éf = 0.04 is not much different from that of = 0.
However, the simulation result shows that this slight difference mdkes; unreliable.
Whend = 0.5 (“misspecifiet), Jw s is still reasonably accurate, whilg, 1 s is heavily
biased.

These results show that as an approximation of the generalization &xr@K is more
robust against the misspecification of models thian s, which is in good agreement with
the theoretical analyses given in Section 3 and Section 4.



Learning target function f(x)
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Figure 1: Learning target function ©
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Figure 2: The means and error bar8§ s, Jwrs, Gors, andJors over100 runs as
functions ofe.

In Table 1, the mean and standard deviation of the generalization error obtained by each
method is described. When= 0, the existing method (B) works better than the proposed
method (A). Actually, in this case, training input densities that approximately minimize
Gwrs andGors were found by s andJors. Therefore, the difference of the errors

is caused by the difference of WLS and OLS: WLS generally has larger variance than
OLS. Since bias is zero for both WLS and OLS)i= 0, OLS would be more accurate

than WLS. Although the proposed method (A) is outperformed by the existing method (B),
it still works better than the passive learning scheme (C). When0.04 andé = 0.5 the
proposed method (A) gives significantly smaller errors than other methods.

Overall, we found that for all three cases, the proposed method (A) works reasonably well
and outperforms the passive learning scheme (C). On the other hand, the existing method
(B) works excellently in the correctly specified case, although it tends to perform poorly
once the correctness of the model is violated. Therefore, the proposed method (A) is found
to be robust against the misspecification of models and thus it is reliable.



Table 2: The means and standard deviations of the test em@BEQVE data sets. All
values in the table are multiplied dy3>.

Bank-8fm Bank-8fh Bank-8nm Bank-8nh
(A) [ 0.31+0.04 2104+0.05 24.66+1.20 37.98+1.11
(B) | 0.444+0.07 2.21£0.09 27.67£1.50 39.71+1.38
(C) | 0.354+0.04 2.20£0.06 26.34%£1.35 39.84+1.35

Kin-8fm Kin-8fh Kin-8nm Kin-8nh

(A) | 1.594+0.07 5.90+0.16 0.7240.04 3.684+0.09
(B) | 1.494+0.06 563+£0.13 0.85+£0.06 3.60+0.09
(C) | 1.704£0.08 6.27£0.24 0.81+£0.06 3.8904+£0.14
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Figure 3: Mean relative performance of (A) and (B) comparethWC). For each run,

the test errors of (A) and (B) are normalized by the test error of (C), and then the values
are averaged over00 runs. Note that the error bars were reasonably small so they were
omitted.

Realistic Data Set: Here we use eight practical data sets provided by DELVERB&hk-
8fm, Bank-8fh, Bank-8nm, Bank-8nh, Kin-8fm, Kin-8fh, Kin-8amdKin-8nh Each data
set includesk192 samples, consisting df-dimensional input and-dimensional output
values. For convenience, every attribute is normalized[ihto].

Suppose we are given dll92 input points (i.e., unlabeled samples). Note that output
values are unknown. From the pool of unlabeled samples, we choesel 000 input
points {x; }12%° for training and observe the corresponding output valug$;2°. The
task is to predict the output values of all unlabeled samples.

In this experiment, the test input densjiy(«) is unknown. So we estimate it using the
independent Gaussian density.

~ _4d ~ ~
pe(®) = (2735 15) " % exp (‘”93 — fyrpll?/(2 12\/1LE)) ;
wheregiy, ;. » and¥yr g are the maximum likelihood estimates of the mean and standard
deviation obtained from all unlabeled samples. ket 50 and the basis functions be
wi(®) = exp (—||az — ti||2/2) fori=1,2,...,50,
where{t; }°2, are template points randomly chosen from the pool of unlabeled samples.

We select the training input density; («) from the independent Gaussian density with
meant,, ;  and standard deviatioR s . g, where

¢=0.7,0.75,0.8,...,2.4.

In this simulation, we can not create the training input points in an arbitrary location be-
cause we only havél192 samples. Therefore, we first create temporary input points fol-
lowing the determined training input density, and then choose the input points from the
pool of unlabeled samples that are closest to the temporary input points. For each data set,
we repeat this simulatioh00 times, by changing the template poifts}22, in each run.



The means and standard deviations of the test errorléderuns are described in Table 2.

The proposed method (A) outperforms the existing method (B) for five data sets, while it
is outperformed by (B) for the other three data sets. We conjecture that the model used
for learning is almost correct in these three data sets. This result implies that the proposed
method (A) is slightly better than the existing method (B).

Figure 3 depicts the relative performance of the proposed method (A) and the existing
method (B) compared with the passive learning scheme (C). This shows that (A) outper-
forms (C) for all eight data sets, while (B) is comparable or is outperformed by (C) for five
data sets. Therefore, the proposed method (A) is overall shown to work better than other
schemes.

6 Conclusions

We argued that active learning is essentially the situation under the covariate shift—the
training input density is different from the test input density. When the model used for
learning is correctly specified, the covariate shift does not matter. However, for misspeci-
fied models, we have to explicitly cope with the covariate shift. In this paper, we proposed
a new active learning method based on the weighted least-squares learning.

The numerical study showed that the existing method works better than the proposed
method if model is correctly specified. However, the existing method tends to perform
poorly once the correctness of the model is violated. On the other hand, the proposed
method overall worked reasonably well and it consistently outperformed the passive learn-
ing scheme. Therefore, the proposed method would be robust against the misspecification
of models and thusiit is reliable.

The proposed method can be theoretically justified if the model is approximately correct
in a weak sense. However, it is no longer valid for totally misspecified models. A natural
future direction would be therefore to devise an active learning method which has theoret-
ical guarantee with totally misspecified models. It is also important to notice that when the
model is totally misspecified, even learning with optimal training input points would not
be successful anyway. In such cases, it is of course important to camyoaldi selection

In active learning research—including the present paper, however, the location of train-
ing input points are designed forsinglemodel at hand. That is, the model should have
been chosebeforeperforming active learning. Devising a method for simultaneously op-
timizing models and the location of training input points would be a more important and
promising future direction.
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