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Abstract

Recent experimental results suggest that dendritic and back-propagating
spikes can influence synaptic plasticity in different ways [1]. In this study
we investigate how these signals could temporally interact at dendrites
leading to changing plasticity properties at local synapse clusters. Sim-
ilar to a previous study [2], we employ a differential Hebbian plasticity
rule to emulate spike-timing dependent plasticity. We use dendritic (D-)
and back-propagating (BP-) spikes as post-synaptic signals in the learn-
ing rule and investigate how their interaction will influence plasticity. We
will analyze a situation where synapse plasticity characteristics change in
the course of time, depending on the type of post-synaptic activity mo-
mentarily elicited. Starting with weak synapses, which only elicit local
D-spikes, a slow, unspecific growth process is induced. As soon as the
soma begins to spike this process is replaced by fast synaptic changes as
the consequence of the much stronger and sharper BP-spike, which now
dominates the plasticity rule. This way a winner-take-all-mechanism
emerges in a two-stage process, enhancing the best-correlated inputs.
These results suggest that synaptic plasticity is a temporal changing pro-
cess by which the computational properties of dendrites or complete neu-
rons can be substantially augmented.

1 Introduction

The traditional view on Hebbian plasticity is that the correlation between pre- and postsy-
naptic events will drive learning. This view ignores the fact that synaptic plasticity is driven
by a whole sequence of events and that some of these events are causally related. For ex-
ample, usually through the synaptic activity at a cluster of synapses the postsynaptic spike
will be triggered. This signal can then travel retrogradely into the dendrite (as a so-called
back-propagating- or BP-spike, [3]), leading to a depolarization at this and other clusters
of synapses by which their plasticity will be influenced. More locally, something similar
can happen if a cluster of synapses is able to elicit a dendritic spike (D-spike, [4, 5]), which
may not travel far, but which certainly leads to a local depolarization “under” these and



adjacent synapses, triggering synaptic plasticity of one kind or another. Hence synaptic
plasticity seems to be to some degree influenced by recurrent processes. In this study, we
will use a differential Hebbian learning rule [2, 6] to emulate spike timing dependent plas-
ticity (STDP, [7, 8]). With one specifically chosen example architecture we will investigate
how the temporal relation between dendritic- and back propagating spikes could influence
plasticity. Specifically we will report how learning could change during the course of net-
work development, and how that could enrich the computational properties of the affected
neuronal compartments.

Figure 1: Basic learning scheme with x1, ..., xn representing inputs to cluster 1, hAMPA,
hNMDA - filters shaping AMPA and NMDA signals, hDS , h̃DS , hBP - filters shaping D
and BP-spikes, q1, q2 - differential thresholds, τ - a delay. Weight impact is saturated. Only
the first of m clusters is shown explicitly; clusters 2, 3, ...,m would be employing the same
BP spike (not shown). The symbol ⊕ represents a summation node and ⊗ multiplication.

2 The Model

A block diagram of the model is shown in Fig. 1. The model includes several clusters of
synapses located on dendritic branches. Dendritic spikes are elicited following the summa-
tion of several AMPA signals passing threshold q1. NMDA receptor influence on dendritic
spike generation was not considered as the contribution of NMDA potentials to the to-
tal membrane potential is substantially smaller than that of AMPA channels at a mixed
synapse.

Inputs to the model arrive in groups, but each input line gets only one pulse in a given
group (Fig. 2 C). Each synaptic cluster is limited to generating one dendritic spike from
one arriving pulse group. Cell firing is not explicitly modelled but said to be achieved
when the summation of several dendritic spikes at the cell soma has passed threshold q2.
This leads to a BP-spike. Progression of signals along a dendrite is not modelled explicitly,
but expressed by means of delays. Since we do not model biophysical processes, all signal
shapes are obtained by appropriate filters h, where u = x ∗ h is the convolution of spike
train x with filter h.

A differential Hebbian-type learning rule is used to drive synaptic plasticity [2, 6] with
ρ̇ = µuv̇, where ρ denotes synaptic weight, u stands for the synaptic input, v for the
output, and µ for the learning rate. see e.g.; u and v̇ annotations in Fig. 1, top left.



NMDA signals are used as the pre-synaptic signals, dendritic spikes, or dendritic spikes
complemented by back-propagating spikes, define the post-synaptic signals for the learning
rule. In addition, synaptic weights were sigmoidally saturated with limits zero and one.
Filter shapes forming AMPA and NMDA channel responses, as well as back- propagating
spikes and some forms of dendritic spikes used in this study were described by:

h(t) =
e−2πt/τ − e−8πt/τ

6π/τ
(1)

where τ determines the total duration of the pulse. The ratio between rise and fall time is
1 : 4. We use for AMPA channels: τ = 6 ms, for NMDA channels: τ = 120 ms, for
dendritic spikes: τ = 235 ms, and for BP-spikes: τ = 40 ms.

Note, we are approximating the NMDA characteristic by a non-voltage dependent filter
function. In conjunction with STDP, this simplification is justified by Saudargiene et al
[2, 9], showing that voltage dependency induces only a second-order effect on the shape of
the STDP curve.

Individual input timings are drawn from a uniform distribution from within a pre-specified
interval which can vary under different conditions. We distinguish three basic input groups:
strongly correlated inputs (several inputs over an interval of up to 10 ms), less correlated
(dispersed over an interval of 10-100 ms) and uncorrelated (dispersed over the interval of
more than 100 ms).

Figure 2: Example STDP curves (A,B), input pulse distribution (C), and model setup (D).
A) STDP curve obtained with a D-spike using Eq. 1 with τ = 235 ms, B) from a BP
spike with τ = 40 ms. C) Example input pulse distribution for two pulse groups. D)
Model neuron with two dendritic branches (left and right), consisting of two sub-branches
which get inputs X or Y , which are similar for either side. DS stands for D-spike, BP for
a BP-spike.



3 Results

3.1 Experimental setup

Fig. 2 A,B shows two STDP curves, one obtained with a wide D-spike the other one with
a much sharper BP-spike. The study investigates interactions of such post-synaptic sig-
nals in time. Though the signals interact linearly, the much stronger BP signal dominates
learning when elicited. In the absence of a BP spike the D-spike dominates plasticity. This
seems to correspond to new physiological observations concerning the relations between
post-synaptic signals and the actually expressed form of plasticity [10]. We specifically
investigate a two-phase processes, where plasticity is first dominated by the D- spike and
later by a BP-spike.

Fig. 2 D shows a setup in which two-phase plasticity could arise. We assume that inputs to
compact clusters of synapses are similar (e.g. all left branches in Fig. 2 D) but dissimilar
over larger distances (between left and right branches). First, e.g. early in development,
synapses may be weak and only the conjoint action of many synchronous inputs will lead to
a local D-spike. Local plasticity from these few D-spikes (indicated by the circular arrow
under the dendritic branches in Fig. 2) strengthens these synapses and at some point D-
spikes are elicited more reliably at conjoint branches. This could finally also lead to spiking
at the soma and, hence, to a BP-spike, changing plasticity of the individual synapses.

To emulate such a multi-cluster system we actually model only one left and one right
branch. Plasticity in both branches is driven by D-spikes in the first part of the experi-
ment. Assuming that at some point the cell will be driven into spiking, a BP-spike is added
after several hundred pulse groups (second part of the experiment).

Figure 3: Temporal weight development for the setup shown in Fig 2 with one sub-branch
for the driving cluster (A), and one for the non-driving cluster (B). Initially all weights
grow gradually until the driving cluster leads to a BP-spike after 200 pulse groups. Thus
only the weights of its group x1 − x3 will continue to grow, now at an increased rate.

3.2 An emerging winner-take-all mechanism

In Fig. 3 we have simulated two clusters each with nine synapses. For both clusters, we
assume that the input activity for three synapses is closely correlated and that they occur
in a temporal interval of 6 ms (group x, y: 1 − 3). Three other inputs are wider dispersed
(interval of 35 ms, group x, y: 4−6) and the three remaining ones arrive uncorrelated in an
interval of 150 ms (group x, y: 7 − 9). The activity of the second cluster is determined by
the same parameters. Pulse groups arriving at the second cluster, however, were randomly
shifted by maximally ±20 ms relative to the centre of the pulse group of the first cluster.



All synapses start with weights 0.5, which will not suffice to drive the soma of the cell
into spiking. Hence initially plasticity can only take place by D-spikes, and we assume
that D-spikes will not reach the other cluster. Hence, learning is local. The wide D-spike
leads to a broad learning curve which has a span of about ±17.5ms around zero, covering
the dispersion of input groups 1 − 3 as well as 4 − 6. Furthermore it has a slightly bigger
area under the LTP part as compared to the LTD part. As a consequence, in both diagrams
(Fig. 3 A,B) we see that all weights 1 − 6 grow, only for the least correlated input 6 − 9
the weights remain close their origin. The correlated group 1 − 3, however, benefits most
strongly, because it is more likely that a D-spike will be elicited by this group than by any
other combination.

Conjoint growth at a whole cluster of such synapses would at some point drive the cell into
somatic firing. Here we just assume that this happens for one cluster (Fig. 3 A) at a certain
time point. This can, for example, be the case when the input properties of the two input
groups are different leading to (slightly) less weight growth in the other cluster. As soon as
this happens a BP-spike is triggered and the STDP curve takes a narrow shape similar to
that in Fig. 2 B now strongly enhancing all causally driving synapses, hence group x1 −x3

(Fig. 3 A). This group grows at an increased rate while all other synapses shrink. Hence,
in general this system exhibits two-phase plasticity. This result was reproduced in a model
with 100 synapses in each input group (data not shown) and in the next sections we will
show that a system with two growth phases is rather robust against parameter variations.

Figure 4: Robustness of the observed effects. Plotted are the average weights of the less
correlated group (ordinate) against the correlated group (abscissa). Simulation with three
correlated and three less correlated inputs, for AMPA: τ = 6 ms, for NMDA: τ = 117 ms,
for D-spike: τ = 235 ms, for BP-spike: τ = 6− 66 ms, q1 = 0.14. D/BP spike amplitude
relation from 1/1.5 to 1/15, depending on BP-spike width, and keeping the area under the
BP-spike constant, µ = 0.2. For further explanation see text.



3.3 Robustness

This system is not readily suited for analytical investigation like the simpler ones in [9].
However, a fairly exhaustive parameter analysis is performed. Fig. 4 shows a plot of 350
experiments with the same basic architecture, using only one synapse cluster and the same
chain of events as before but with different parameter settings. Only ”strong correlated”
(< 10 ms) and ”less correlated” (10 − 100 ms) inputs were used in this experiment. Each
point represents one experiment consisting of 600 pulse groups. On the abscissa we plot
the average weight of the three correlated synapses; on the ordinate the average weight of
the three less correlated synapses after these 600 pulse groups. We assume, as in the last
experiment, that a BP-spike is triggered as soon as q2 is passed, which happens around
pulse group 200 in all cases.

Four parameters were varied to obtain this plot. (1) The width of the BP-spike was varied
between 5 ms and 50 ms. (2) The interval width for the temporal distribution of the three
correlated spikes was varied between 1 ms and 10 ms. Hence 1 ms amounts to three
synchronously elicited spikes. (3) The interval width for the temporal distribution of the
three less correlated spikes was varied between 1 ms and 100 ms. (4) The shift of the
BP-spike with respect to the beginning of the D-spike was varied in an interval of ±80 ms.

Mainly parameters 3 and 4 have an effect on the results. The first parameter, BP spike
width, shows some small interference with the spike shift for the widest spikes. The second
parameter has almost no influence, due to the small parameter range (10 ms). Symbol
coding is used in Fig. 4 to better depict the influence of parameters 3 and 4 in their different
ranges. Symbols “dots”, “diamonds” and “others” (circles and plusses) refer to a BP-spike
shifts: of less than −5 ms (dots), between −5 ms and +5 ms (diamonds) and larger
than +5 ms (circles and pluses). Circles in the latter region show cases with the less
correlated dispersion interval below 40 ms, and plusses the cases of the dispersion 40 ms
or higher. The “dot” region (−5 ms) shows cases where correlated synapses will grow,
while less correlated synapses can grow or shrink. This happens because the BP spike
is too early to influence plasticity in the strongly correlated group, which will grow by
the DS-mechanism only, but the BP-spike still falls in the dispersion range of the less
correlated group, influencing its weights. At a shift of −5 ms a fast transition in the weight
development occurs. The reason for this transition is that the BP-spike, being very close
to the D-spike, overrules the effect of the D-spike. The randomness whether the input falls
into pre- or post-output zone in both, correlated and less correlated, groups is large enough,
and leads to weights staying close to origin or to shrinkage. The circles and plusses encode
the dispersion of the wide, less correlated spike distributions in the case when time shifts of
the BP-spike are positive (> 5 ms, hence BP-spike after D-spike). Dispersions are getting
wider essentially from top to bottom (circle to dot). Clearly this shows that there are many
cases corresponding to the example depicted in Fig. 3 (horizontal tail of Fig. 4 A), but there
are also many conventional situations, where both weight-groups just grow in a similar way
(diagonal).

The data points show a certain regularity when the BP spike shift moves from big values
towards the borderline of +5 ms, where the weights stop to grow. For big shifts, points
cluster on the upper, diagonal tail in or near the dot region. With a smaller BP spike shift
points move up this tail and then drop down to the horizontal tail, which occurs for shifts
of about 20 ms. This pattern is typical for the bigger dispersion in the range of 20− 60 ms
and data points essentially follow the circle drawn in the figure.

This happens because as soon as the BP-spike gets closer to the D-spike, it will start to
exert its influence. But this will first only affect the less correlated group as there are
almost always some inputs so late that they “collide” with the BP-spike. Time of collision,
however, is random and sometimes these input are “pre” while sometimes they are “post”
with respect to the BP-spike. Hence LTP and LTD will be essentially balanced in the less



correlated group, leading on average to zero weight growth. This effect is most pronounced
when the less correlated group has an intermediate dispersion (see the circles from the
upper tail dropping to the lower tail in the range of dispersions 20− 40 ms ), while it does
not occur if the dispersion of correlated and less correlated groups are similar (1− 20 ms).

Furthermore, the clear separation into the top- (circles, 1−40 ms) and bottom-tail (plusses,
61 − 100 ms) indicates that it is possible to let the parameters drift quite a bit without
leaving the respective regions. Hence, while the moment-to-moment weight growth might
change, the general pattern will stay the same.

4 Discussion

Just like with the famous Baron von Münchausen, who was able to pull himself out of a
swamp by his own hair, the current study suggests that plasticity change as a consequence
of itself might lead to specific functional properties. In order to arrive at this conclusion,
we have used a simplified model of STDP and combined it with a custom designed and
also simplified dendritic architecture. Hence, can the conclusions of this study be valid and
where are the limitations? We believe that answer to the first question is affirmative because
the degree of abstraction used in this model and the complexity of the results match. This
model never attempted to address the difficult issues of the biophysics of synaptic plasticity
(for a discussion see [2]) and it was also not our goal to investigate the mechanisms of signal
propagation in a dendrite [11]. Both aspects had been reduced to a few basic descriptors
and this way we were able to show for the first time that a useful synaptic selection process
can develop over time. The system consisted of a first “pre-growth” phase (until the BP-
spike sets in) followed by a second phase where only one group of synapses grows strongly,
while the others shrink again. In general this example describes a scenario where groups
of synapses first undergo less selective classical Hebbian-like growth, while later more
pronounced STDP sets in, selecting only the main driving group. We believe that in the
early development of a real brain such a two-phase system might be beneficial for the
stable selection of those synapses that are better correlated. It is conceivable that at early
developmental stages correlations are in general weaker, while the number of inputs to a
cell is probably much higher than in the adult stage, where many have been pruned. Hence
highly selective and strong STDP-like plasticity employed too early might lead to a noise-
induced growth of ”the wrong” synapses. This, however, might be prevented by just such
a soft pre-selection mechanisms which would gradually drive clusters of synapses apart by
a local dendritic process before the stronger influence of the back-propagating spike sets
in. This is supported by recent results from Holthoff et al [1, 12], who have shown that D-
spikes will lead to a different type of plasticity than BP-spikes in layer 5 pyramidal cells in
mouse cortex. Many more complications exist, for example the assumed chain of events of
D- and BP-spikes may be very different in different neurons and the interactions between
these signals may be far more non-linear (but see [10]). This will require to re-address
these issues in greater detail when dealing with a specific given neuron but the general
conclusions about the self-influencing and local [2, 13] character of synaptic plasticity and
their possible functional use should hopefully remain valid.
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