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Abstract

We develop an approach for estimation with Gaussian Markov processes
that imposes a smoothness prior while allowing for discontinuities. In-
stead of propagating information laterally between neighboring nodes
in a graph, we study the posterior distribution of the hidden nodes as a
whole—how it is perturbed by invoking discontinuities, or weakening
the edges, in the graph. We show that the resulting computation amounts
to feed-forward fan-in operations reminiscent of V1 neurons. Moreover,
using suitable matrix preconditioners, the incurred matrix inverse and
determinant can be approximated, without iteration, in the same compu-
tational style. Simulation results illustrate the merits of this approach.

1 Introduction

Two issues, (i) efficient representation, and (ii) efficient inference, are of central importance
in the area of statistical modeling of vision problems. For generative models, often the ease
of generation and the ease of inference are two conflicting features. Factor Analysis [1]
and its variants, for example, model the input as a linear superposition of basis functions.
While the generation, or synthesis, of the input is immediate, the inference part is usually
not. One may apply a set of filters,e.g., Gabor filters, to the input image. In so doing,
however, the statistical modeling is only deferred, and further steps, either implicit or ex-
plicit, are needed to capture the ‘code’ carried by those filter responses. By characterizing
mutual dependencies among adjacent nodes, Markov Random Field (MRF) [2] and graph-
ical models [3] are other powerful ways for modeling the input, which, when continuous,
is often conveniently assumed to be Gaussian. In vision applications, it’s suitable to em-
ploy smoothness priors admitting discontinuities [4]. Examples includeweak membranes
andplates[5], formulated in the context of variational energy minimization. Typically, the
inference for MRF or graphical models would incur lateral propagation of information be-
tween neighboring units [6]. This is appealing in the sense that it consists of only simple,
local operations carried out in parallel. However, the resulting latency could undermine the
plausibility that such algorithms are employed in human early vision inference tasks [7].

In this paper we take the weak membrane and plate as instances of Gaussian processes
(GP). We show that the effect of marking each discontinuity (hereafter termed as “bond-



breaking”) is to perturb the inverse of covariance matrix of the hidden nodesx by a matrix
of rank 1. When multiple bonds are broken, the computation of the posterior mean and
covariance ofx would involve the inversion of a matrix, which typically has large con-
dition number, implying very slow convergence in straight-forward iterative approaches.
We show that there exists a family of preconditioners that can bring the condition number
close to 1, thereby greatly speeding up the iteration—to the extent that a single step would
suffice in practice. Therefore, the predominant computation employed in our approach is
noniterative, of fan-in and fan-out style. We also devise ways to learn the parameters re-
garding state and observation noise non-iteratively. Finally, we report experimental results
of applying the proposed algorithm to image-denoising.

2 Perturbing a Gaussian Markov Process (GMP)

Consider a spatially invariant GMP defined on a torus,x ∼ N (0, Q0), whose energy—
defined asxT Q−1

0 x—is the sum of energies of all edges1 in the graph, due to the Markovian
property. In what follows, we perturb the potential matrixQ−1

0 by reducing the coupling
energy of certain bonds2. This relieves the smoothness constraint on the nodes connected
via those bonds.

Suppose the energy reduction of a bond connecting nodei andj (whose state vectors arexi

andxj , respectively) can be expressed as(xT
i fi + xT

j fj)2, wherefi andfj are coefficient
vectors. This becomes(xT f)2, if f is constructed to be a vector of same size asx, with the
only non-zero entriesfi andfj corresponding to nodei andj. This manipulation can be
identified with a rank-1 perturbation ofQ−1

0 , asQ−1
1 ← Q−1

0 − ffT , which is equivalent
to xT Q−1

1 x ← xT Q−1
0 x − (xT f)2, ∀x. We call this an elementary perturbation ofQ−1

0 ,
andf an elementary perturbation vector associated with the particular bond.

WhenL such perturbations have taken place (cf. Fig. 1), we form theL perturbation vectors
into a matrixF1 = [f1, . . . , fL], and then the collective perturbations yield

Q−1
1 = Q−1

0 − F1F
T
1 (1)

and thus Q1 = Q0 + Q0F1(I − FT
1 Q0F1)−1FT

1 Q0, (2)

which follows from the Sherman-Morrison-Woodbury Formula (SMWF).

2.1 Perturbing a membrane and a plate

In a membrane model [5],xi is scalar and the energy of the bond connectingxi andxj is
(xi − xj)2/q, whereq is a parameter denoting the variance of state noise. Upon perturba-
tion, this energy is reduced toη2(xi − xj)2/q, where0 < η � 1 ensures positivity of the
energy. Then, the energy reduction is(1 − η2)(xi − xj)2/q, from which we can identify
fi =

√
(1− η2)/q andfj = −fi.

In the case of a plate [5],xi = [ui, uhi, uvi]T , in whichui represents the intensity, while
uhi and uvi represent its gradient in the horizontal and vertical direction, respectively.
We define the energy of a horizontal bond connecting nodej andi asE

(−,i)
0 = (uvi −

uvj)2/q + d(−,i)T
O−1d(−,i), where

d(−,i) =
[

ui

uhi

]
−

[
1 1
0 1

] [
uj

uhj

]
and O = q

[
1/3 1/2
1/2 1

]
,

1Henceforth calledbonds, asedgewill refer to intensity discontinuity in an image.
2The bond energy remains positive. This ensures the positive definiteness of the potential matrix.



the superscript(−, i) representing horizontal bond to the left of nodei. The first and sec-
ond term ofE(−,i) would correspond to(∂2u(h, v)/∂h∂v)2/q and(∂2u(h, v)/∂h2)2/q,

respectively, ifu(h, v) is a continuous function ofh and v (cf. [5]). If E
(−,i)
0 is re-

duced toE
(−,i)
1 = [(uvi − uvj)2 + (uhi − uhj)2]/q, i.e., coupling between nodei

and j exists only through their gradient values, one can show that the energy reduction
E

(−,i)
0 −E

(−,i)
1 = [ui−uj− (uhi +uhj)/2]2 ·12/q. Taking the actual energy reduction to

be (1 − η2)(E(−,i)
0 − E

(−,i)
1 ), we can identifyfi

(−,i) =
√

12(1− η2)/q[1,−1/2, 0]T

and fj
(−,i) =

√
12(1− η2)/q[−1,−1/2, 0]T , where0 < η � 1 ensures the posi-

tive definiteness of the resulting potential matrix. A similar procedure can be applied
to a vertical bond in the plate, producing a perturbation vectorf (|,i), whose compo-
nents are zero everywhere except forfi

(|,i) =
√

12(1− η2)/q[1, 0,−1/2]T andfj
(|,i) =√

12(1− η2)/q[−1, 0,−1/2]T , for which nodej is the lower neighbor of nodei.

One can verify thatxT f = 0 when the plate assumes the shape of a linear slope, mean-
ing that this perturbation produces no energy difference in such a case.(xT f)2 becomes
significant when the perturbed, or broken, bond associated withf straddles across a step
discontinuity of the image. Such anf is thus related to edge detection.

2.2 Hidden state estimation

Standard formulae exist for the posterior covarianceK and mean̂x of x, given a noisy
observation3 y = Cx + n, wheren ∼ N (0, rI).

x̂α = KαCT y/r, and Kα = [Q−1
α + CT C/r]−1, (3)

for either the unperturbed (α = 0) or perturbed (α = 1) process. Thus,

K1 = [Q−1
0 + CT C/r − F1F

T
1 ]−1, following Eq. 3 and 1

= [K−1
0 − F1F

T
1 ]−1,

= K0 + W1H
−1
1 WT

1 , applying SMWF, (4)

where H1 , I − FT
1 K0F1, and W1 , K0F1 (5)

∴ x̂1 = K1C
T y/r

= K0C
T y/r + W1H

−1
1 WT

1 CT y/r = x̂0 + x̂c, (6)

where x̂c , W1H
−1
1 WT

1 CT y/r,

= W1H
−1
1 z1, where z1 = WT

1 CT y/r (7)

On a digital computer, the above computation can be efficiently implemented in the Fourier
domain, despite the huge size ofKα andQα. For example,K1 equalsK0—a circulant
matrix—plus a rank-L perturbation (cf. Eq. 4). Since each column ofW1 is a spatially
shifted copy of a prototypical vector, arising from breaking either a horizontal or a vertical
bond, convolution can be utilized in computingWT

1 CT y. The computation ofH−1
1 is

deferred to Section 3. On a neural substrate, however, the computation can be implemented
by inner-products in parallel. For instance,z1r is the result of inner-products between
the inputy and the feed-forward fan-in weightsCW , coded by the dendrites of identical
neurons, each situated at a broken bond. Letv1 = H−1

1 z1 be the responses of another layer
of neurons. ThenCx̂c = CWv1 amounts to the back-projection of layerv1 to the input
plane with fan-out weights identical to the fan-in counterpart.

We can also apply the above procedure incrementally4, i.e., applyF1 and thenF2, both
consisting of a set of perturbation vectors. Quantities resulting from theα’th perturba-

3The observation matrixC = I for a membrane, andC = I ⊗ [1, 0, 0] for a plate.
4Latency considerations, however, preclude the practicability offully incremental computation.



Figure 1: A portion of
MRF. Solid and broken
lines denote intact and
broken bonds, respec-
tively. Open circles de-
note hidden nodesxi

and filled circles denote
observed nodesyi.
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Figure 2: The resulting receptive field of the edge detector pro-
duced by breaking the shaded bond shown in Fig. 1. The central
vertical dashed line in (a) and (b) marks the location of the ver-
tical streak of bonds shown as broken in Fig. 1. In (a), those
bonds are not actually broken; in (b), they are. In (c), a central
horizontal slice of (a) is plotted as a solid curve and the coun-
terpart of (b) as a dashed curve.

x̂0
x̂c
y, x̂1

Figure 3: Estimation ofx given inputy. x̂0: by unperturbed rod;̂x1: coinciding per-
fectly with y, is obtained by a rod whose two bonds at the step edges ofy are broken;̂xc:
correction term, engendered by the perturbed rod.

tion step can be obtained from those of the(α − 1)’th step, simply by replacing the sub-
script/superscript ‘1’ and ‘0’ withα andα− 1, respectively, in Eqs. 1 to 6. In particular,

W2 = K1F2 = K0F2︸ ︷︷ ︸
gW2

+ W1H
−1
1 WT

1 F2︸ ︷︷ ︸
δW2

, (8)

whereW̃2 refers to the weights due toF2 in the absence of perturbationF1, which, when
indeed existent, would exert a contextual effect onF2, thereby contributing to the term
δW2.

Figure 2 illustrates this effect on one perturbation vector (termed ‘edge detector’) in a
membrane model, wherein ‘receptive field’ refers tõW2 andW2 in the case of panel (a)
and (b), respectively. Evidently, the receptive field ofW2 across the contextual boundary
is pinched off. Figure 3 shows the estimation ofx, cf. Eq. 6 and 7, using a 1D plate,i.e.,
rod. We stress that once the relevant edges are detected,x̂c is computed almost instantly,
without the need of iterative refinement via lateral propagation. This could be related to the
brightness filling-in signal[8].

2.3 Parameter estimation

As edge inference/detection is outside the scope of this paper, we limit our attention to
finding optimal values for the parametersr andq. Although the EM algorithm is possible



for that purpose, we strive for a non-iterative alternative. To that end, we reparameterizer
andq into r and% = q/r. Given a possibly perturbed modelMα, in whichx ∼ N (0, Qα),
we havey ∼ N (0, Sα), whereSα = rI + CQαCT . Note thatS̃α , Sα/r does not
depend onr when% is fixed, asQα ∝ q ∝ r =⇒ Sα ∝ r. Next, we aim to maximize the
log-probability ofy, which is a vector ofN components (or pixels).

J̃α , Lnp(y|Mα) = −(NLn(2π) + Ln|Sα|+ yT Sα
−1y)/2

= −(NLn(2π) + NLnr + Ln|S̃α|+ (yT S̃α

−1
y)/r)/2

Setting ∂J̃α/∂r = 0 ⇒ r̂ = Eα/N, where Eα , yT S̃α

−1
y (9)

Define J , NLnEα + Ln|S̃α| = const.− 2J̃α|r̂ (10)

J is a function of% only, and we locate thê% that minimizesJ as follows. Prompted by the
fact that% governs thespatial scaleof the process [5] and scale channels exist in primate
visual system, we computeJ(%) for a preselected set of%, corresponding to spatial scales
half-octave apart, and then fit the resultingJ ’s with a cubic polynomial, whose location of
minimum suggestŝ%. We use this approach in Section 4.

ComputingJ in Eq. 10 needs two identities, which are included here without proof (the
second can be proven by using SMWF and its associated determinant identity):Eα =
yT (y − Cx̂α) (cf. Appendix A of [5]), and|S0|/|Sα| = |Bα|/|Hα|, where

Hα = I − Fα
T K0Fα, and Bα , I − Fα

T Q0Fα (11)

That is, Eα can be readily obtained oncêxα has been estimated, and|S̃α| =
|S̃0||Hα|/|Bα|, in which |S̃0| can be calculated in the spectral domain, asS0 is circulant.
The computation of|Hα| and|Bα| is dealt with in the next section.

3 Matrix Preconditioning

Some of the foregoing computation necessitates matrix determinant and matrix inverse,
e.g., H−1z1(cf. Eq. 7). BecauseH is typically poorly conditioned, plain iterative means to
evaluateH−1za would converge very slowly. Methods exist in the literature for finding a
matrixP ([9] and references therein) satisfying the following two criteria: (1) invertingP
is easy; (2) the condition numberκ(P−1H) approaches 1. Ideally,κ(P−1H) = 1 implies
P = H . Here we summarize our findings regarding the best class of preconditioners when
H arises from some prototypical configurations of bond breaking. We call the following
procedure Approximate Diagonalization (AD).

(1) ‘DFT’. When a streak of broken bonds forms a closed contour, with a consistent polarity
convention (e.g., the excitatory region of the receptive field of the edge detector associated
with each bond lies inside the enclosed region),H andB (cf. Eq. 11) are approximately cir-
culant. LetX be the unitary Fourier matrix of same size asH , then He = X†HX would
be approximately diagonal. LetΛH be diagonal:ΛHij = δijH

e
ii, thenH̃ = XΛHX† is

a circulant matrix approximatingH ;
∏

i ΛHii approximates|H |; XΛH
−1X† approx-

imatesH−1. In this way, a computation such asH−1z1 becomesXΛH
−1X†z1, which

amounts to simple fan-in and fan-out operations, if we regard each column ofX as a fan-in
weight vector. The quality of this preconditionerH̃ can be evaluated by both the condition
numberκ(H̃−1H) and the relative error between the inverse matrices:

ε , ‖H̃−1 −H−1‖F /‖H−1‖F , (12)

where‖ � ‖F denotes Frobenius norm. The sameX can approximately diagonalizeB, and
the product of the diagonal elements of the resulting matrix approximates|B|.



(2) ‘DCST’. One end of the streak of broken bonds (target contour) abuts another contour,
and the other end is open (i.e., line-end). Imagine a vibrational mode of the membrane/plate
given the configuration of broken bonds. The vibrational contrast of the nodes across the
broken bond at a line-end has to be small, since in the immediate vicinity there exist paths
of intact bonds linking the two nodes. This suggests a Dirichlet boundary condition at
the line-end. At the abutting end (i.e., a T-junction), however, the vibrational contrast can
be large, since the nodes on different sides of the contour are practically decoupled. This
suggests a von Neumann boundary condition. This analysis leads to using a transform
(termed ‘HSWA’ in [10]) which we call ‘DCST’, denoting sine phase at the open end and
cosine phase at the abutting end. The unitary transform matrixX is given by: Xi,j =
2
√

2L + 1 cos(π(i− 1/2)(j − 1/2)/(L + 1/2)), 1 ≤ i, j ≤ L, whereL is the number of
broken bonds in the target contour.

(3) ‘DST’. When the streak of broken bonds form an open-ended contour,H can be approx-
imately diagonalized by Sine Transform (cf. the intuitive rationale stated in case (2)), of
which the unitary transform matrixX is given by:Xi,j =

√
2/(L + 1) sin(πij/(L + 1)),

1 ≤ i, j ≤ L.

For a ‘clean’ prototypical contour, the performance of such preconditioners is remarkable,
typically producing1 ≤ κ < 1.2 andε < 0.05. When contours in the image are intercon-
nected in a complex way, we first parse the image domain into non-overlapping enclosed
regions, and then treat each region independently. A contour segment dividing two re-
gions is shared between them, and thus would contribute two copies, each belonging to one
region[11].

4 Experiment

We test our approach on a real image (Fig. 4a), which is corrupted with three increasing
levels of white Gaussian noise: SNR = 4.79db (Fig. 4b), 3.52db, and 2.34db. Our task is to
estimate the original image, along with finding optimalq andr. We used both membrane
and plate models, and in each case we used both the ‘direct’ method, which directly com-
putesH−1 in Eq. 7 and|H |/|B| required in Eq. 10, and the ‘AD’ method, as described in
Section 3, to compute those quantities in approximation.

We first apply a Canny detector to generate an edge map (Fig. 4g) for each noisy image,
which is then converted to broken bonds. The large number (over104) of broken bonds
makes the direct method impractical. In order to attain a ‘direct’ result, we partition the
image domain into a5 × 5 array of blocks (one such block is delineated by the inner
square in Fig. 4g), and focus on each of them in turn by retaining edges not more than 10
pixels from the target block (this block’s outer scope is delineated with the outer square in
Fig. 4g). Whenx̂ is inferred given this partial edge map, only its pixels within the block
are considered valid and are retained. We mosaic upx̂ from all those blocks to get the
complete inferred image. In ‘AD’, we parse the contours in each block and apply different
diagonalizers accordingly, as summarized in Section 3. The performance of the three types
of AD is plotted in Fig. 5, from which it is evident that in majority of casesκ < 1.5 and
ε ≤ 10%. Fig. 4e and f illustrate the procedure to find optimalq/r for a membrane and a
plate, respectively, as explained in Section 2.3. Note how good the cubic polynomial fit is,
and that the results of AD do not deviate much from those of the direct (rigorous) method.
Fig. 4c and 4d shoŵx by a perturbed and intact membrane model, respectively. Notice that
the edges, for instance around Lena’s shoulder and her hat, in Fig. 4d are more smeared
than those in Fig. 4c (cf. Fig. 3). Table 1 summarizes the value of optimalq/r and Mean-
Squared-Error (MSE). Our results compare favorably with those listed in the last column
of the table, which is excerpted from [12].
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Figure 4: (a) Original image, (b) noisy image. Estimation by (c) a
perturbed membrane, and (d) an intact membrane. The criterion func-
tion of varying q/r for (e) perturbed membrane, and (f) perturbed plate,
which shares the same legend as in (e). (g) Canny edge map.
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Table 1: Optimal q/r andMSE.
membrane model plate model Improved

SNR direct AD direct AD Entropic [12]
q/r MSE q/r MSE q/r MSE q/r MSE MSE

4.79 0.456 92 0.444 92 0.067 100 0.075 98 121
3.52 0.299 104 0.311 104 0.044 111 0.049 108 138
2.34 0.217 115 0.233 115 0.033 119 0.031 121 166

5 Conclusions

We have shown how the estimation with perturbed Gaussian Markov processes—hidden
state and parameter estimation—can be carried out in non-iterative way. We have adopted
a holistic viewpoint. Instead of focusing on each individual hidden node, we have taken
each process as an entity under scrutiny. This paradigm shift changes the way information
is stored and represented—from the scenario where the global pattern of the process is
embodied entirely by local couplings to the scenario where fan-in and fan-out weigths, in
addition to local couplings, reflect the patterns of larger scales.

Although edge detection has not been treated in this paper, our formulation is capable of
doing so, and our preliminary results are encouraging. It may be premature at this stage to
translate the operations of our model to neural substrate; we speculate nevertheless that our
approach may have relevance to understanding biological visual systems.
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