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Abstract

Linear implementations of the efficient coding hypothesis, such as inde-
pendent component analysis (ICA) and sparse coding models, have pro-
vided functional explanations for properties of simple cells in V1 [1, 2].
These models, however, ignore the non-linear behavior of neurons and
fail to match individual and population properties of neural receptive
fields in subtle but important ways. Hierarchical models, including Gaus-
sian Scale Mixtures [3, 4] and other generative statistical models [5, 6],
can capture higher-order regularities in natural images and explain non-
linear aspects of neural processing such as normalization and context ef-
fects [6,7]. Previously, it had been assumed that the lower level represen-
tation is independent of the hierarchy, and had been fixed when training
these models. Here we examine the optimal lower-level representations
derived in the context of a hierarchical model and find that the resulting
representations are strikingly different from those based on linear mod-
els. Unlike the the basis functions and filters learned by ICA or sparse
coding, these functions individually more closely resemble simple cell
receptive fields and collectively span a broad range of spatial scales. Our
work unifies several related approaches and observations about natural
image structure and suggests that hierarchical models might yield better
representations of image structure throughout the hierarchy.

1 Introduction

Efficient coding hypothesis has been proposed as a guiding computational principle for
the analysis of early visual system and motivates the search for good statistical models of
natural images. Early work revealed that image statistics are highly non-Gaussian [8, 9],
and models such as independent component analysis (ICA) and sparse coding have been
developed to capture these statistics to form efficient representations of natural images. It
has been suggested that these models explain the basic computational goal of early visual
cortex, as evidenced by the similarity between the learned parameters and the measured
receptive fields of simple cells in V1.
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In fact, it is not clear exactly how well these methods predictthe shapes of neural recep-
tive fields. There has been no thorough characterization of ICA and sparse coding results
for different datasets, pre-processing methods, and specific learning algorithms employed,
although some of these factors clearly affect the resulting representation [10]. When ICA
or sparse coding is applied to natural images, the resulting basis functions resemble Ga-
bor functions [1, 2] — 2D sine waves modulated by Gaussian envelopes — which also
accurately model the shapes of simple cell receptive fields [11]. Often, these results are
visualized in a transformed space, by taking the logarithm of the pixel intensities, spher-
ing (whitening) the image space, or filtering the images to flatten their spectrum. When
analyzed in theoriginal image space, the learned filters (the models’ analogues of neural
receptive fields) do not exhibit the multi-scale properties of the visual system, as they tend
to cluster at high spatial frequencies [10, 12]. Neural receptive fields, on the other hand,
span a broad range of spatial scales, and exhibit distributions of spatial phase and other
parameters unmatched by ICA and SC results [13,14]. Therefore, as models of early visual
processing, these models fail to predict accurately either the individual or the population
properties of cortical visual neurons.

Linear efficient coding methods are also limited in the type of statistical structure they can
capture. Applied to natural images, their coefficients contain significant residual depen-
dencies that cannot be accounted for by the linear form of the models. Several solutions
have been proposed, including multiplicative Gaussian Scale Mixtures [4] and generative
hierarchical models [5, 6]. These models capture some of the observed dependencies; but
their analysis so far has been focused on the higher-order structure learned by the model.
Meanwhile, the lower-level representation is either chosena priori [4] or adapted sepa-
rately, in the absence of the hierarchy [6] or with a fixed hierarchical structure specified in
advance [5].

Here we examine whether the optimal lower-level representation of natural images is dif-
ferent when trained in the context of such non-linear hierarchical models. We also illustrate
how the model not only describes sparse marginal densities and magnitude dependencies,
but captures a variety of joint density functions that are consistent with previous obser-
vations and theoretical conjectures. We show that learned lower-level representations are
strikingly different from those learned by the linear models: they are more multi-scale,
spanning a wide range of spatial scales and phases of the Gabor sinusoid relative to the
Gaussian envelope. Finally, we place these results in the context of whitening, gain con-
trol, and non-linear neural processing.

2 Fully adaptable scale mixture model

A simple and scalable model for natural image patches is a linear factor model, in which the
datax are assumed to be generated as a linear combination of basis functions with additive
noise

x = Au + ε . (1)

Typically, the noise is assumed to be Gaussian with varianceσ2
ε , thus

P (x|A,u) ∝ exp
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The coefficientsu are assumed to be mutually independent, and often modeled with sparse
distributions (e.g. Laplacian) that reflect the non-Gaussian statistics of natural scenes [8,9],

P (u) =
∏

i

P (ui) ∝ exp(−
∑

i

|ui|) . (3)



We can then adapt the basis functionsA to maximize the expected log-likelihood of the
dataL = 〈log P (x|A)〉 over the data ensemble, thereby learning a compact, efficient rep-
resentation of structure in natural images. This is the model underlying the sparse coding
algorithm [2] and closely related to independent component analysis (ICA) [1].

An alternative to fixed sparse priors foru (3) is to use a Gaussian Scale Mixture (GSM)
model [3]. In these models, each observed coefficientui is modeled as a product of random
Gaussian variableyi and a multiplierλi,

ui =
√

λiyi (4)

Conditional on the value of the multiplierλi, the probabilityP (ui|λi) is Gaussian with
varianceλi, but the form of the marginal distribution

P (ui) =

∫

N (0, λi)P (λi)dλi (5)

depends on the probability function ofλi and can assume a variety of shapes, including
sparse heavy-tailed functions that fit the observed distributions of wavelet and ICA coef-
ficients [4]. This type of model can also account for the observed dependencies among
coefficientsu, for example, by expressing them as pair-wise dependencies among the mul-
tiplier variablesλ [4,15].

A more general model, proposed in [6, 16], employs a hierarchical prior forP (u) with
adapted parameters tuned to the global patterns in higher-order dependencies. Specifically,
the logarithm of the variances ofP (u) is assumed to be a linear function of the higher-order
random variablesv,

log σ
2
u = Bv . (6)

Conditional on the higher-order variables, the joint distribution of coefficients is fac-
torisable, as in GSM. In fact, if the conditional densityP (u|v) is Gaussian, thisHi-
erarchical Scale Mixture(HSM) is equivalent to a GSM model, withλ = σ

2
u and

P (u|λ) = P (u|v) = N (0, exp(Bv)), with the added advantage of a more flexible rep-
resentation of higher-order statistical regularities inB. Whereas previous GSM models of
natural images focused on modeling local relationships between coefficients of fixed linear
transforms, this general hierarchical formulation is fully adaptable, allowing us to recover
the optimal lower-level representationA, as well as the higher-order componentsB.

Parameter estimation in the HSM involves adapting model parametersA andB to max-
imize data log-likelihoodL = 〈log P (x|A,B)〉. The gradient descent algorithm for the
estimation ofB has been previously described (see [6]). The optimal lower-level basisA is
computed similarly to the sparse coding algorithm — the goal is to minimize reconstruction
error of the inferred MAP estimatêu. However,̂u is estimated not with a fixed sparsifying
prior, but with a concurrently adapted hierarchical prior. If we assume a Gaussian condi-
tional densityP (u|v) and a standard-Normal priorP (v), the MAP estimates are computed
as

{û, v̂} = arg min
u,v

P (u,v|x,A,B) (7)

= arg min
u,v

P (x|A,B,u,v)P (u|v)P (v) (8)
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Marginalizing over the latent higher-order variables in the hierarchical models leads to
sparse distributions similar to the Laplacian and other density functions assumed in ICA.
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Figure 1: This model can describe a variety of joint density functions for coefficientsu.
Here we show example scatter plots and contour plots of some bivariate densities. Top row:
Gaussian, Laplacian, and generalized Gaussian densities of the formp(u) ∝ exp(−|u|q).
Middle and bottom row: Hierarchical Scale Mixtures with different sets of parametersB.
For illustration, in the hierarchical models the dimensionality ofv is 1, and the matrixB
is simply acolumnvector. These densities are computed by marginalizing over the latent
variablesv, here assumed to follow a standard normal distribution. Even with this simple
hierarchy, the model can generate sparse star-shaped (bottom row) or radially symmetric
(middle row) densities, as well as more complex non-symmetric densities (bottom right). In
higher dimensions, it is possible to describe more complex joint distributions, with different
marginals along different projections.

However, although the model distribution for individual coefficients is similar to the fixed
sparse priors of ICA and sparse coding, the model is fundamentally non-linear and might
yield a different lower-level representation; the coefficientsu are no longer mutually inde-
pendent, and the optimal set of basis functions must account for this.

Also, the shape of thejoint marginal distribution in the space of all the coefficients is more
complex than the i.i.d. joint density of the linear models. Bi-variate joint distributions of
GSM coefficients can capture non-linear dependencies in wavelet coefficients [4]. In the
fully adaptable HSM, however, the joint density can take a variety of shapes that depend on
the learned parametersB (figure 1). Note that this model can produce sparse, star-shaped
distributions as in the linear models, or radially symmetric distributions that cannot be
described by the linear models. Such joint density profiles have been observed empirically
in the responses of phase-offset wavelet coefficients to natural images and have inspired
polar transformation and quadrature pair models [17] (as well as connections to phase-
invariant neural responses). The model described here can capture these joint densities and
others, but rather than assume this structurea priori, it learns it automatically from the data.

3 Methods

To examine how the lower-level representation is affected by the hierarchical model struc-
ture, we comparedA learned by the sparse coding algorithm [2] and the HSM described
above. The models were trained on20×20 image patches sampled from 40 images of out-



door scenes in the Kyoto dataset [12]. We applied a low-pass radially symmetric filter to the
full images to eliminate high corner frequencies (artifacts of the square sampling lattice),
and removed the DC component from each image patch, but did no further pre-processing.
All the results and analyses are reported in the original data space. Noise varianceσ2

ε was
set to 0.1, and the basis functions were initialized to small random values and adapted on
stochastically sampled batches of 300 patches. We ran the algorithm for 10,000 iterations
with a step size of 0.1 (tapered for the last 1,000 iterations, once model parameters were
relatively unchanging).

The parameters of the hierarchical model were estimated in a similar fashion. Gradient
descent onA andB was performed in parallel using MAP estimatesû and v̂. The step
size for adaptingB was gradually increased from .0001 to .01, because emergence of the
variance patterns requires some stabilization in the basis functions inA.

Because encoding in the sparse coding and in the hierarchical model is a non-linear process,
it is not possible to compare the inverse ofA to physiological data. Instead, we estimated
the correspondingfilters using reverse correlation to derive a linear approximation to a
non-linear system, which is also a common method for characterizing V1 simple cells. We
analyzed the resulting filters by fitting them with 2D Gabor functions, then examining the
distribution of their frequencies, phase, and orientation parameters.

4 Results

The shapes of basis functions and filters obtained with sparse coding have been previously
analyzed and compared to neural receptive fields [10, 14]. However, some of the reported
results were in the whitened space or obtained by training on filtered images. In the original
space, sparse coding basis functions have very particular shapes: except for a few large, low
frequency functions, all are localized, odd-symmetric, and span only a single period of the
sinusoid (figure 2, top left). The estimated filters are similar but smaller (figure 2, bottom
left), with peak spatial frequencies clustered at higher frequencies (figure 3).

In the hierarchical model, the learned representation is strikingly different (figure 2, right
panels). Both the basis and the filters span a wider range of spatial scales, a result previously
unobserved for models trained on non-preprocessed images, and one that is more consistent
with physiological data [13, 14]. Also, the shapes of the basis functions are different —
they more closely resemble Gabor functions, although they tend to be less smooth than the
sparse coding basis functions. Both SC- and HSM-derived filters are well fit with Gabor
functions.

We also compared the distributions of spatial phases for filters obtained with sparse coding
and the hierarchical model (figure 4). While sparse coding filters exhibit a strong tendency
for odd-symmetric phase profiles, the hierarchical model results in a much more uniform
distribution of spatial phases. Although some phase asymmetry has been observed in sim-
ple cell receptive fields, their phase properties tend to be much more uniform than sparse
coding filters [14].

In the hierarchical model, the higher-order representationB is also adapted to the statistical
structure of natural images. Although the choice of the prior density forv (e.g. sparse or
Gaussian) can determine the type of structure captured inB, we discovered that it does
not affect the nature of the lower-level representation. For the results reported here, we
assumed a Gaussian prior onv. Thus, as in other multi-variate Gaussian models, the precise
directions ofB are not important; the learned vectors only serve to collectively describe
the volume of the space. In this case, they capture theprincipal components of the log-
variances. Because we were interested specifically in the lower-level representation, we did
not analyze the matrixB in detail, though the principal components of this space seem to
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Figure 2: The lower-level representations learned by sparsecoding (SC) and the hierarchi-
cal scale model (HSM). Shown are subsets of the learned basis functions and the estimates
for the filters obtained with reverse correlation. These functions are displayed in the origi-
nal image space.
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Figure 3: Scatter plots of peak frequencies and orientations of the Gabor functions fitted
to the estimated filters. The units on the radial scale are cycles/pixel and the solid line is
the Nyquist limit. Although both SC and HSM filters exhibit predominantly high spatial
frequencies, the hierarchical model yields a representation that tiles the spatial frequency
space much more evenly.
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Figure 4: The distributions of phases and frequencies for Gabor functions fitted to sparse
coding (SC) and hierarchical scale model (HSM) filters. The phase units specify the phase
of the sinusoid in relation to the peak of the Gaussian envelope of the Gabor function; 0 is
even-symmetric,π/2 is odd-symmetric. The frequency axes are in cycles/pixel.

group co-localized lower-level basis functions and separately represent spatial contrast and
oriented image structure. As reported previously [6,16], with a sparse prior onv, the model
learns higher-order components that individually capture complex spatial, orientation, and
scale regularities in image data.

5 Discussion

We have demonstrated that adapting a general hierarchical model yields lower-level repre-
sentations that are significantly different than those obtained using fixed priors and linear
generative models. The resulting basis functions and filters are multi-scale and more con-
sistent with several observed characteristics of neural receptive fields.

It is interesting that the learned representations are similar to the results obtained when ICA
or sparse coding is applied to whitened images (i.e. with a flattened power spectrum). This
might be explained by the fact that whitening “spheres” the input space, normalizing the
scale of different directions in the space. The hierarchical model is performing a similar
scaling operation through the inference of higher-order variablesv that scale the priors
on basis function coefficientsu. Thus the model can rely on a generic “white” lower
level representation, while employing anadaptivemechanism for normalizing the space,
which accounts for non-stationary statistics on an image-by-image basis [6]. A related
phenomenon in neural processing is gain control, which might be one specific type of a
general adaptation process.

The flexibility of the hierarchical model allows us to learn a lower-level representation that
is optimal in the context of the hierarchy. Thus, we expect the learned parameters to define
a better statistical model for natural images than other approaches in which the lower-level
representation or the higher-order dependencies are fixed in advance. For example, the flex-
ible marginal distributions, illustrated in figure 1, should be able to capture a wider range of
statistical structure in natural images. One way to quantify the benefit of an adapted lower-
level representation is to apply the model to problems like image de-noising and filling-in
missing pixels. Related models have achieved state-of-the-art performance [15, 18], and
we are currently investigating whether the added flexibility of the model discussed here
confers additional advantages.

Finally, although the results presented here are more consistent with the observed proper-
ties of neural receptive fields, several discrepancies remain. For example, our results, as
well as those of other statistical models, fail to account for the prevalence of low spatial fre-
quency receptive fields observed in V1. This could be a result of the specific choice of the
distribution assumed by the model, although the described hierarchical framework makes
few assumptions about the joint distribution of basis function coefficients. More likely, the
non-stationary statistics of the natural scenes play a role in determining the properties of
the learned representation. As suggested by previous results [10], different image data-sets



can lead to different parameters. This provides a strong motivation for training models
with an “over-complete” basis, in which the number of basis functions is greater than the
dimensionality of the input data [19]. In this case, different subsets of the basis functions
can adapt to optimally represent different image contexts, and the population properties of
such over-complete representations could be significantly different. It would be particu-
larly interesting to investigate representations learned in these models in the context of a
hierarchical model.
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