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Abstract

We discuss a method for obtaining a subject’sa priori beliefs from
his/her behavior in a psychophysics context, under the assumption that
the behavior is (nearly) optimal from a Bayesian perspective. The
method is nonparametric in the sense that we do not assume that the
prior belongs to any fixed class of distributions (e.g., Gaussian). Despite
this increased generality, the method is relatively simple to implement,
being based in the simplest case on a linear programming algorithm, and
more generally on a straightforward maximum likelihood or maximum
a posteriori formulation, which turns out to be a convex optimization
problem (with no non-global local maxima) in many important cases. In
addition, we develop methods for analyzing the uncertainty of these esti-
mates. We demonstrate the accuracy of the method in a simple simulated
coin-flipping setting; in particular, the method is able to precisely track
the evolution of the subject’s posterior distribution as more and more data
are observed. We close by briefly discussing an interesting connection to
recent models of neural population coding.

Introduction

Bayesian methods have become quite popular in psychophysics and neuroscience (1–5); in
particular, a recent trend has been to interpret observed biases in perception and/or behavior
as optimal, in a Bayesian (average) sense, under ecologically-determined prior distributions
on the stimuli or behavioral contexts under study. For example, (2) interpret visual motion
illusions in terms of a prior weighted towards slow, smooth movements of objects in space.

In an experimental context, it is clearly desirable to empirically obtain estimates of the
prior the subject is operating under; the idea would be to then compare these experimental
estimates of the subject’s prior with the ecological prior he or she “should” have been
using. Conversely, such an approach would have the potential to establish that the subject
is not behaving Bayes-optimally under any prior, but rather is in fact using a different, non-
Bayesian strategy. Such tools would also be quite useful in the context of studies of learning
and generalization, in which we would like to track the time course of a subject’s adaptation
to an experimentally-chosen prior distribution (5). Such estimates of the subject’s prior
have in the past been rather qualitative, and/or limited to simple parametric families (e.g.,
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the width of a Gaussian may be fit to the experimental data, but the actual Gaussian identity
of the prior is not examined systematically).

We present a more quantitative method here. We first discuss the method in the general case
of an arbitrarily-chosen loss function (the “cost” which we assume the subject is attempting
to minimize, on average), then examine a few special important cases (e.g., mean-square
and mean-absolute error) in which the technique may be simplified somewhat. The algo-
rithms for determining the subject’s prior distributions turn out to be surprisingly quick and
easy to code: the basic idea is that each observed stimulus-response pair provides a set of
constraints on what the actual prior could be. In the simplest case, these constraints are
linear, and the resulting algorithm is simply a version of linear programming, for which
very efficient algorithms exist. More generally, the constraints are probabilistic, and we
discuss likelihood-based methods for combining these noisy constraints (and in particular
when the resulting maximum likelihood, or maximuma posteriori, problem can be solved
efficiently via ascent methods, without fear of getting trapped in non-global local maxima).
Finally, we discuss Bayesian methods for representing the uncertainty in our estimates.

We should point out that related problems have appeared in the statistics literature, par-
ticularly under the subject of elicitation of expert opinion (6–8); in the machine learn-
ing literature, most recently in the area of “inverse reinforcement learning” (9); and in
the economics/ game theory literature on utility learning (10). The experimental eco-
nomics literature in particular is quite vast (where the relevance to gambling, price setting,
etc. is discussed at length, particularly in settings in which “rational” — expected utility-
maximizing — behavior seems to break down); see, e.g. Wakker’s recent bibliography
(www1.fee.uva.nl/creed/wakker/refs/rfrncs.htm) for further references. Finally, it is worth
noting that the question of determining a subject’s (or more precisely, an opponent’s) pri-
ors in a gambling context — in particular, in the binary case of whether or not an opponent
will accept a bet, given a fixed table of outcomes vs. payoffs — has received attention
going back to the foundations of decision theory, most prominently in the discussions of
de Finetti and Savage. Nevertheless, we are unaware of any previous application of simi-
lar techniques (both for estimating a subject’s true prior and for analyzing the uncertainty
associated with these estimates) in the psychophysical or neuroscience literature.

General case

Our technique for determining the subject’s prior is based on several assumptions (some of
which will be relaxed below). To begin, we assume that the subject is behaving optimally
in a Bayesian sense. To be precise, we have four ingredients: a prior distribution on some
hidden parameterθ; observed input (stimulus) data, dependent in some probabilistic way
on θ; the subject’s corresponding output estimates of the underlyingθ, given the input
data; and finally a loss functionD(., .) that penalizes bad estimates forθ. The fundamental
assumption is that, on each triali, the subject is choosing the estimateθ̂i of the underlying
parameter, given dataxi, to minimize the posterior average error

∫

p(θ|xi)D(θ̂i, θ)dθ ∼

∫

p(θ)p(xi|θ)D(θ̂i, θ)dθ, (1)

wherep(θ) is the prior on hidden parameters (the unknown object the experimenter is trying
to estimate), andp(xi|θ) is the likelihood of dataxi given θ. For example, in the visual
motion example,θ could be the true underlying velocity of an object moving through space,
the observed dataxi could be a short, noise-contaminated movie of the object’s motion, and
the subject would be asked to estimate the true motionθ given the dataxi and any prior
conceptions,p(θ), of how one expects objects to move. Note that we have also implicitly
assumed, in this simplest case, that both the lossD(., .) and likelihood functionsp(xi|θ)
are known, both to the subject and to the experimenter (perhaps from a preceding set of



“learning” trials).

So how can the experimenter actually estimatep(θ), given the likelihoodsp(x|θ), the loss
functionD(., .), and some set of data{xi} with corresponding estimates{θ̂i} minimizing
the posterior expected loss (1)? This turns out to be a linear programming problem (11),
for which very efficient algorithms exist (e.g., “linprog.m” in Matlab). To see why, first
note that the right hand side of expression (1) is linear in the priorp(θ). Second, we have a
large collection of linear constraints onp(θ): we know that

p(θ) ≥ 0 ∀θ (2)
∫

p(θ)dθ = 1 (3)
∫

p(θ)p(xi|θ)

[

D(θ̂i, θ) − D(z, θ)

]

dθ ≤ 0 ∀z (4)

where (2-3) are satisfied by any proper prior distribution and (4) is the maximizer condition
(1) expressed in slightly different language. (See also (10), who noted the same linear
programming structure in an application to cost function estimation, rather than the prior
estimation examined here.)

The solution to the linear programming problem defined by (2-4) isn’t necessarily unique; it
corresponds to an intersection of half-spaces, which is convex in general. To come up with
a unique solution, we could maximimize a concave “regularizing” function on this convex
set; possible such functions include, e.g., the entropy ofp(θ), or its negative mean-square
derivative (this function is strictly concave on the space of all functions whose integral is
held fixed, as is the case here given constraint (3)); more generally, if we have some prior
information on the form of the priors the subject might be using, and this information can
be expressed in the “energy” form

P [p(θ)] ∼ eq[p(θ)],

for a concave functionalq[.], we could use the log of this “prior on priors”P . An alternative
solution would be to modify constraint (4) to

∫

p(θ)p(xi|θ)

[

D(θ̂i, θ) − D(z, θ)

]

≤ −ǫ ∀z,

where we can then adjust the slack variableǫ until the contraint set shrinks to a single
point. This leads directly to another linear programming problem (where we want to make
the linear functionǫ as large as possible, under the above constraints). Note that for this
last approach to work — for the linear programming problem to have a solution — we need
to ensure that the set defined by the constraints (2-4) is compact; this basically means that
the constraint set (4) needs to be sufficiently rich, which, in turn, means that sufficient data
(or sufficiently strong prior constraints) are required. We will return to this point below.

Finally, what if our primary assumption is not met? That is, what if subjects are not quite
behaving optimally with respect top(θ)? It is possible to detect this situation in the above
framework, for example if the slack variableǫ above is found to be negative. However, a
different, more probabilistic viewpoint can be taken. Assume the value of the choiceθ̂i is
optimal under some “comparison” noise, that is,

∫

p(θ)p(xi|θ)

[

D(θ̂i, θ) − D(z, θ)

]

≤ σηi(z) ∀z,

with ηi(z) a random variable of scaleσ > 0 (assumeη to be i.i.d. for now, although this
may be generalized). If we assume this decision noiseη has a log-concave density (i.e.,
the log of the density is a concave function; e.g., Gaussian, or exponential), then so does



its integral (12), and the resulting maximum likelihood problem has no non-global local
maxima and is therefore solvable by ascent methods. To see this, write the log-likelihood
of (p, σ) given data{xi, θ̂i} as

L{xi,θ̂i}
(p, σ) =

∑

log

∫ ui(z)

−∞

dp(η),

with the sum over the set of all the constraints in (4) and

ui(z) ≡
1

σ

∫

p(θ)p(xi|θ)

[

D(θ̂i, θ) − D(z, θ)

]

.

L is the sum of concave functions inui, and hence is concave itself, and has no non-global
local maxima in these variables; sinceσ andp are linearly related throughui (and(p, σ)
live in a convex set),L has no non-global local maxima in(p, σ), either. Once again, this
maximum likelihood problem may be regularized by prior information1, maximizing the
a posteriori likelihood L(p) − q[p] instead ofL(p); this problem is similarly tractable by
ascent methods, by the concavity of−q[.] (note that this “soft-constraint” problem reduces
exactly to the “hard” constraint problem (4) as the noiseσ → 0)2.

Note that the estimated value of the noise scaleσ plays a similar role to that of the slack
variableǫ, above, with the difference thatǫ can be much more sensitive to the worst trial
(that is, the trial on which the subject behaves most suboptimally); we can use either of
these slack variables to go back and ask about how close to optimally the subjects were
actually performing — large values ofσ, for example, imply sub-optimal performance. An
additional interesting idea is to use the computed value ofη as a kind of outlier test;η large
implies the trial was particularly suboptimal.

Special cases

Maximum a posterioriestimation: The maximuma posteriori (MAP) estimator corre-
sponds to the Hamming distance loss function,

D(i, j) = 1(i 6= j);

this implies that the constraints (4) have the simple form

p(θ̂i) − p(z)L(θ̂i, z) ≥ 0,

with L(θ̂i, z) defined as the largest observed likelihood ratio forθ̂i andz, that is,

L(θ̂i, z) ≡ max
xi

p(xi|z)

p(xi|θ̂i)
,

1Overfitting here is a symptom of the fact that in some cases — particularly when few data samples
have been observed — many priors (even highly implausible priors) can explain the observed data
fairly well; in this case, it is often quite useful to penalize these “implausible” priors, thus effectively
regularizing our estimates. Similar observations have appeared in the context of medical applications
of Markov random field methods (13).

2Another possible application of this regularization idea is as follows. We may incorporate im-
proper priors — that is, priors which may not integrate to unity (such priors frequently arise in the
analysis of reparameterization-invariant decision procedures, for example) — without any major con-
ceptual modification in our analysis, simply by removing the normalization contraint (3). However,
a problem arises: the zero measure,p(θ) ≡ 0, will always trivially satisfy the remaining constraints
(2) and (4). This problem could potentially be ameliorated by introducing a convex regularizing term
(or equivalently, a log-concave prior) on the total mass

R

p(θ)dθ.



with the maximum taken over allxi which led to the estimatêθi. This setup is perhaps
most appropriate for a two-alternative forced choice situation, where the problem is one of
classification or discrimination, not estimation.

Mean-square and absolute-error regression: Our discussion assumes an even simpler
form when the loss functionD(., .) is taken to be squared error,D(x, y) = (x − y)2, or
absolute error,D(x, y) = |x − y|. In this case it is convenient to work with a slightly
different noise model than the classification noise discussed above; instead, we may model
the subject’s responses as optimal plus estimation noise. For squared-error, the optimal
θ̂i is known to be uniquely defined as the conditional mean ofθ givenxi. Thus we may
replace the collection of linear inequality constraints (4) with a much smaller set of linear
equalities(a single equality per trial, instead of a single inequality per trial perz):

∫
(

p(xi|θ)(θ − θ̂i)

)

p(θ)dθ = σηi; (5)

the corresponding likelihood, again, has no non-global local maxima ifη has a log-concave
density. In the simplest case of Gaussianη, the maximum likelihood problem may be
solved by standard nonnegative least-squares (e.g., “lsqnonneg” or “quadprog” in Matlab).

In the absolute error case, the optimalθ̂i is given by the conditional median ofθ given
xi (although recall that the median is not necessarily unique here); thus, the inequality
constraints (4) may again be replaced by equalities which are linear inp(θ):

∫ θ̂i

−∞

p(θ)p(xi|θ) −

∫ ∞

θ̂i

p(θ)p(xi|θ) = σηi;

again, for Gaussianη this may be solved via standard nonnegative regression, albeit with a
different constraint matrix. In each case,ηi retains its utility as an outlier score.

A worked example: learning the fairness of a coin

In this section we will work through a concrete example, to show how to put the ideas
discussed above into practice. We take perhaps the simplest possible example, for clarity:
the subject observes some numberN of independent, identically distributed coin flips, and
on each triali tells us his/her probability of observing tails on the next trial, given that
t = t(i) tails were observed in the firsti trials3. Here the likelihood functionsp(xi|θ)

take the standard binomial formp(t(i)|ptails) =
(

i

t

)

pt
tails(1 − ptails)

i−t (note that it is
reasonable to assume that these likelihoods are known to the subject, at least approximately,
due to the ubiquity of binomial data).

Under our assumptions, the subject’s estimatesp̂tails,i are given as the posterior mean
of ptails given the number of tails observed up to triali. This puts us directly in the
mean-square framework discussed in equation (5); we assume Gaussian estimation noiseη,
construct a regression matrixA of N rows, with thei-th row given byp(t(i)|ptails)(ptails−
p̂tails,i). To regularize our estimates, we add a small square-difference penalty of the form
q[p(θ)] =

∫

|dp(θ)/dθ|2dθ. Finally, we estimate

p̂(θ) = arg min
p≥0;

R

1

0
p(θ)dθ=1

||Ap||22 + ǫq[p],

for ǫ ≈ 10−7; this estimate is equivalent to MAP estimation under a (weak) Gaussian prior
on the functionp(θ) (truncated so thatp(θ) ≥ 0), and is computed using quadprog.m.

3We note in passing that this simple binomial paradigm has potential applications to ideal-
observer analysis of classical neuroscientific tasks (e.g., synaptic release detection, or photon count-
ing in retina) in addition to potential applications in psychophysics.
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Figure 1: Learning the fairness of a coin (numerical simulation).Top panel: True prior distribution
on coin fairness. The bimodal nature of this prior indicates that the subject expects coins to be
unfair (skewed towards heads,ptails < .5, or tails, ptails > .5) more often than fair (ptails =
.5). Second: Observed data. Open circles indicate the fraction of observed tailst = t(i) as a
function of trial numberi (the maximum likelihood estimate, MLE, of the fairness and a minimal
sufficient statistic for this problem);+ symbols indicate the subject’s estimate of the coin’s fairness,
assumed to correspond to the posterior mean of the fairness under the subject’s prior. Note the
systematic deviations of the subject’s estimate from the MLE; these deviations shrink asi increases
and the strength of the prior relative to the likelihood term decreases.Third: Binomial likelihood
terms
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pt

tails(1 − ptails)
i−t. Color of trace correponds to trial numberi, as indicated in previous

panel (traces are normalized for clarity).Fourth: Estimate of prior given150 trials. Black trace
indicates true prior (as in top panel); red indicates estimate±1 posterior standard error (computed
via importance sampling).Bottom: Tracking the evolution of the posterior. Black traces indicate
the subject’s true posterior after observing0 (thin trace),50 (medium trace), and100 (thick trace)
sample coin flips; as more data are observed, the subject becomes more and more confident about
the true fairness of the coin (p= .5), and the posteriors match the likelihood terms (c.f. third panel)
more closely. Red traces indicate the estimated posterior given the full150 or just the last100 or 50
trials, respectively (errorbars omitted for visibility). Note that the procedure tracks the evolution of
the subject’s posterior quite accurately, given relatively few trials.

To place Bayesian confidence intervals around our estimate, we sample from the corre-
sponding (truncated) Gaussian posterior distribution onp(θ) (via importance sampling with
a suitably shifted, rescaled truncated Gaussian proposal density; similar methods are ap-
plicable more generally in the non-Gaussian case via the usual posterior approximation
techniques, e.g. Laplace approximation). Figs. 1-2 demonstrate the accuracy of the es-
timatedp̂(θ); in particular, the bottom panels show that the method accurately tracks the
evolution of the model subjects’ posteriors as an increasing amount of data are observed.
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Figure 2: Learning an unfair coin (ptails = .25). Conventions as in Fig. 1.

Connection to neural population coding

It is interesting to note a connection to the neural population coding model studied in (14)
(with more recent work reviewed in (15)). The basic idea is that neural populations encode
not just stimuli, but probability distributions over stimuli (where the distribution describes
the uncertainty in the state of the encoded object). Here the experimentally observed data
are neural firing rates, which provide constraints on the underlying encoded “prior” distri-
bution in terms of the individual tuning function of each cell in the observed population.

The simplest model is as follows: the observed spikesni from thei-th cell are Poisson-
distributed, with rate a nonlinear function of a linear functional of some prior distribution,

ni ∼ Poiss

(

g

(
∫

p(θ)f(xi, θ)

))

,

where the kernelf is considered as the cell’s “tuning function”; the log-concavity of the
likelihood of p is preserved for any nonlinearityg that is convex and log-concave, a class
including the linear rectifiers, exponentials, and power-laws (and studied more extensively
in (16)). Alternately, a simplified model is often used, e.g.:

ni ∼ q

(

ni −
∫

p(θ)f(xi, θ)

σ

)

,

with q a log-concave density (typically Gaussian) to preserve the concavity of the log-
likelihood; in this case, the scaleσ of the noise does not vary with the mean firing rate,



as it does in the Poisson model. In both cases, the observed firing rates act as constraints
oriented linearly with respect top; in the latter case, the noise scaleσ sets the strength, or
confidence, of each such constraint (2, 3). Thus, under this framework, given the simul-
taneously recorded activity of many cells{ni} and some model for the tuning functions
f(xi, θ), we can inferp(θ) (and represent the uncertainty in these estimates) using meth-
ods quite similar to those developed above.

Directions

The obvious open avenue for future research (aside from application to experimental data)
is to relax the assumptions: that the likelihood and cost function are both known, and that
the data are observed directly (without any noise). It seems fair to conjecture that the
subject can learn the likelihood and cost functions given enough data, but one would like to
test this directly, e.g. by estimatingD(., .) andp together, perhaps under restrictions on the
form of D(., .). As emphasized above, the utility estimation problem has received a great
deal of attention, and it is plausible to expect that the methods proposed here for estimation
of the prior might be combined with previously-studied methods for utility elicitation and
estimation. It is also interesting to consider these elicitation methods in the context of
experimental design (8, 17, 18), in which we might actively seek stimulixi to maximally
constrain the possible form of the prior and/or cost function.
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