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Abstract

Spectral clustering is useful for a wide-ranging set of applications in areas such as
biological data analysis, image processing and data mining. However, the com-
putational and/or communication resources required by the method in processing
large-scale data are often prohibitively high, and practitioners are often required to
perturb the original data in various ways (quantization, downsampling, etc) before

invoking a spectral algorithm. In this paper, we use stochastic perturbation theory
to study the effects of data perturbation on the performance of spectral clustering.
We show that the error under perturbation of spectral clustering is closely related
to the perturbation of the eigenvectors of the Laplacian matrix. From this result

we derive approximate upper bounds on the clustering error. We show that this
bound is tight empirically across a wide range of problems, suggesting that it can
be used in practical settings to determine the amount of data reduction allowed in
order to meet a specification of permitted loss in clustering performance.

1 Introduction

A critical problem in machine learning is that of scaling: Algorithms should be effective compu-
tationally and statistically as various dimensions of a problem are scaled. One general tool for
approaching large-scale problems is that of clustering or partitioning, in essence an appeal to the
principle of divide-and-conquer. However, while the output of a clustering algorithm may yield a
set of smaller-scale problems that may be easier to tackle, clustering algorithms can themselves be
complex, and large-scale clustering often requires the kinds of preprocessing steps that are invoked
for other machine learning algorithms [1], including proto-clustering steps such as quantization,
downsampling and compression. Such preprocessing steps also arise in the distributed sensing and
distributed computing setting, where communication and storage limitations may preclude transmit-
ting the original data to centralized processors.

A number of recent works have begun to tackle the issue of determining the tradeoffs that arise
under various “perturbations” of data, including quantization and downsampling [2, 3, 4]. Most of
these analyses have been undertaken in the context of well-studied domains such as classification,
regression and density estimation, for which there are existing statistical analyses of the effect of
noise on performance. Although extrinsic noise differs conceptually from perturbations to data
imposed by a data analyst to cope with resource limitations, the mathematical issues arising in the
two cases are similar and the analyses of noise have provided a basis for the study of the tradeoffs
arising from perturbations.

In this paper we focus on spectral clustering, a class of clustering methods that are based on eigen-
decompositions of affinity, dissimilarity or kernel matrices [5, 6, 7, 8]. These algorithms often out-
perform traditional clustering algorithms such as the K-means algorithm or hierarchical clustering.
To date, however, their impact on real-world, large-scale problems has been limited; in particular,
a distributed or “in-network” version of spectral clustering has not yet appeared. Moreover, there
has been little work on the statistical analysis of spectral clustering, and thus there is little theory to
guide the design of distributed algorithms. There is an existing literature on numerical techniques for
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Figure 1:A spectral bipartitioning algorithm. Figure 2:Perturbation analysis: from clustering
error to data perturbation error.

scaling spectral clustering (including downsampling [9, 10] and the relaxation of precision require-
ments for the eigenvector computation [7]), but this literature does not provide end-to-end, practical
bounds on error rates as a function of data perturbations.

In this paper we present the first end-to-end analysis of the effect of data perturbations on spectral
clustering. Our focus is quantization, but our analysis is general and can be used to treat other kinds
of data perturbation. Indeed, given that our approach is based on treating perturbations as random
variables, we believe that our methods will also prove useful in developing statistical analyses of
spectral clustering (although that is not our focus in this paper).

The paper is organized as follows. In Section 2, we provide a brief introduction to spectral clustering.
Section 3 contains the main results of the paper; specifically we introduce the mis-clustering rate
7, and present upper bounds gmue to data perturbations. In Section 4, we present an empirical
evaluation of our analyses. Finally, in Section 5 we present our conclusions.

2 Spectral clustering and data perturbation

2.1 Background on spectral clustering algorithms

Given a set of data poin{; }7*_,, x; € R*¢ and some notion of similarity between all pairs of data
pointsx; andx;, spectral clustering attempts to divide the data points into groups such that points in
the same group are similar and points in different groups are dissimilar. The point of departure of a
spectral clustering algorithm is a weightsidhilarity graphG(V, E), where the vertices correspond

to data points and the weights correspond to the pairwise similarities. Based on this weighted graph,
spectral clustering algorithms form the graph Laplacian and compute an eigendecomposition of this
Laplacian [5, 6, 7]. While some algorithms use multiple eigenvectors and findiay clustering
directly, the most widely studied algorithms form a bipartitioning of the data by thresholding the
second eigenvector of the Laplacian (the eigenvector with the second smallest eigenvalue). Larger
numbers of clusters are found by applying the bipartitioning algorithm recursively. We present a
specific example of a spectral bipartitioning algorithm in Fig. 1.

2.2 Input data perturbation

Let the data matrixX € R"*“ be formed by stacking data samples in rows. To this data matrix we
assume that perturbatid#i is applied, such that we obtain a perturbed versioof the original data

X. We assume that a spectral clustering algorithm is appliédand we wish to compare the results

of this clustering with respect to the spectral clustering(ofThis analysis captures a number of data
perturbation methods, including data filtering, quantization, lossy compression and synopsis-based
data approximation [11]. The multi-scale clustering algorithms that use “representative” samples to
approximate the original data can be treated using our analysis as well [12].



3 Mis-clustering rate and effects of data perturbation

Let K andL be the similarity and Laplacian matrix on the original dataand letX” andL be those
on the perturbed data. We define thés-clustering rate; as the proportion of samples that have
different cluster memberships when computed on the two different versions of theXdaraj X .
We wish to bound in terms of the “magnitude” of the error matfi¥ = X — X, which we now
define. We make the following general stochastic assumption on the error matrix

A. All elements of the error matri¥)” are i.i.d. random variables with zero mean, bounded
variances? and bounded fourth central momertt, and are independent of.

Remark. (i) Note that we do not make i.i.d. assumptions on the elements of the similarity matrix;
rather, our assumption refers to the input data only. (ii) This assumption is distribution free, and
captures a wide variety of practical data collection and quantization schemes. (iii) Certain data
perturbation schemes may not satisfy the independence assumption. We have not yet conducted an
analysis of the robustness of our bounds to lack of independence, but in our empirical work we have
found that the bounds are robust to relatively small amounts of correlation.

We aim to produce practically useful boundsmpim terms ofc and the data matriX'. The bounds

should be reasonably tight so that in practice they could be used to determine the degree of pertur-
bationo given a desired level of clustering performance, or to provide a clustering error guarantee
on the original data even though we have access only to its approximate version.

Fig. 2 outlines the steps in our theoretical analysis. Briefly, when we perturb the input data (e.g., by
filtering, quantization or compression), we introduce a perturbdfioto the data which is quan-

tified by 2. This induces an errafK := K — K in the similarity matrix, and in turn an error

dL := L — L in the Laplacian matrix. This further yields an error in the second eigenvector of
the Laplacian matrix, which results in mis-clustering error. Overall, we establish an analytical re-
lationship between the mis-clustering ratand the data perturbation erref, wherer is usually
monotonically increasing witle2. Our goal is to allow practitioners to specify a mis-clustering
raten*, and by inverting this relationship, to determine the right magnitude of the perturlagtion
allowed. That is, our work can provide a practical method to determine the tradeoff between data
perturbation and the loss of clustering accuracy due to the u&einstead ofX. When the data
perturbation can be related to computational or communications savings, then our analysis yields a
practical characterization of the overall resource/accuracy tradeoff.

Practical Applications Consider in particular a clustering task in a distributed networking system
that allows an application to specify a desired clustering &rfoon the distributed data (which is

not available to the coordinator). Through a communication protocol similar to that in [4], the coor-
dinator (e.g., network operation center) gets access to the perturbed dataspectral clustering.

The coordinator can compute a clustering error botnasing our method. By setting < C*, it
determines the tolerable data perturbation esfoand instructs distributed devices to use appropri-

ate numbers of bits to quantize their data. Thus we can provide guarantees on the achieved error,
C < C*, with respect to the original distributed data even with access only to the perturbed data.

3.1 Upper bounding the mis-clustering rate

Little is currently known about the connection between clustering error and perturbations to the
Laplacian matrix in the spectral clustering setting. [5] presented an upper bound for the clustering
error, however this bound is usually quite loose and is not viable for practical applications. In this
section we propose a new approach based on a water-filling argument that yields a tighter, practical
bound. Letvy, andv, be the unit-length second eigenvectord.adnd L, respectively. We derive a
relationship between the mis-clustering ratends? := || vy — v» 2.

The intuition behind our derivation is suggested in Fig. 3.d.ahdb denote the sets of components

in vo corresponding to clusters of sizg andk,, respectively, and similarly far’ andb’ in the case

of vo. If vo is changed tor, due to the perturbation, an incorrect clustering happens whenever a
component ol in seta jumps to set’, denoted as — ', or a component in sétjumps to set’,
denoted a$ — a’. The key observation is that each flipping of cluster membership in eithen’
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Figure 3: The second eigenvector, and its per-  Figure 4:An example of the tightness of
turbed counterpar, (denoted by dashed lines). the upper bound fon in Eq. (1).

orb — a’ contributes a fairly large amount to the valueédf compared to the short-range drifts
ina — a’ orb — . Given a fixed value 0§2, the maximum possible number of flippings (i.e.,
missed clusterings) is therefore constrained, and this translates into an upper baund for

We make the following assumptions on the datand its perturbation:

B1. The components of, form two clusters (with respect to the spectral bipartitioning algo-
rithm in Fig. 1). The size of each cluster is comparable.to

B2. The perturbation is small with the total number of mis-clusterings. min(k1, k2), and
the components of; form two clusters. The size of each cluster is comparable to

B3. The perturbation of individual componentswf in each set ofi — a’,a — V', b — d
andb — b’ have identical (not necessary independent) distributions with bounded second
moments, respectively, and they are uncorrelated with the components in

Our perturbation bound can now be stated as follows:

Proposition 1. Under assumptions B1, B2 and B3, the mis-clusteringwai&the spectral biparti-
tioning algorithm under the perturbation satisfigs< §2 = ||vo — v/, If we further assume that
all components of, — v, are independent, then

1 < (14 0p(1))E[[v2 — v2*. (e
The proof of the proposition is provided in the Appendix.

Remarks. (i) Assumption B3 was motivated by our empirical work. Although it is difficult to
establish general necessary and sufficient conditions for B3 to hold, in the Appendix we present
some special cases that allow B3 to be verified a priori. It is also worth noting that B3 appears
to hold (approximately) across a range of experiments presented in Section 4. (ii) If we assume
piecewise constancy fary, then we can relax the uncorrelated assumption in B3. (iii) Our bound
has a different flavor than that obtained in [5]. Although the bound in Theorem 4.3 in [5] works for
k-way clustering, it assumes a block-diagonal Laplacian matrix and requires the gap between the
k" and(k + 1)t" eigenvalues to be greater thaf2, which is unrealistic in many data sets. In the
setting of 2-way spectral clustering and a small perturbation, our bound is much tighter than that
derived in [5]; see Fig. 4 in particular.

3.2 Perturbation on the second eigenvector of Laplacian matrix

We now turn to the relationship between the perturbation of eigenvectors with that of its matrix.
One approach is to simply draw on the classical domain of matrix perturbation theory; in particular,
applying Theorem V.2.8 from [13], we have the following bound on the (small) perturbation of the
second eigenvector:

[4dL|
v—2|dL|F’

wherev is the gap between the second and the third eigenvalue. However, in our experimental
evaluation we found that can be quite small in some data sets, and in these cases the right-hand

)

[V2 — va| <
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Figure 5: Experimental examples of the fidelity of the approximation in Eq. (5). We add i.i.d. zero mean
Gaussian noise to the input data with differepand we see that the right-hand side (RHS) of (5) approximately
upper bounds the left-hand side (LHS).

side of (2) can be quite large even for a small perturbation. Thus the bound given by (2) is often not
useful in practical applications.

To derive a more practically useful bound, we begin with a well-known first-order Taylor expansion
to compute the perturbation on the second eigenvector of a Laplacian matrix as follows:

" vTdLvs n n
Vo —vVy = Z %ij +0(dL?) = Z Um”q2deq
J=1j7#2 J j:m;&z J p=1g=1
n SV n
- 3|t ) [ 3 ) <D, ®
p=1 q=1 j=1j#2 2 p=1

wheres, = > 1, vg2dL,, is a random variable determined by the effect of the perturbation on

the Laplacian matrix., and the vecton, = 377, ., ( - AJ ) is a constant determined by the
eigendecomposition of the Laplacian matfix Then we have

Zﬁpup ZEHBPUP”2+2Z Z E 52“1 Bju ) (4)
p=1

i=1 j=i+1
In our experimental work we have found that o j, 5;u; is either very weakly correlated with
Bju; (i.e., the total sum of all cross terms is typically one or two orders of magnitude less than that
of squared term), or negatively correlated withu; (i.e., the total sum of all cross terms is less than
zero). This empirical evidence suggests the following approximate bound:

E|v2 — vo|? ~ E

E[[v —va|* S Y EB; - uy*. 5)
p=1
Examples of the fidelity of this approximation for particular data sets are shown in Fig. 5.

Finally, Eﬁg is related talL,,,, and can be upper bounded by

n

n 2 n
Eﬁ}% =E (Z Uququ> < ZZ Vi2V;52 - E dez) (dej) + |’U1‘2Uj2|0'pi0'pj} y (6)
q=1

i=1 j=1
whereo,,; is the variance oflL,;.

Remark. Through Egs. (5) and (6), we can bound the squared norm of the perturbation on the
second eigenvector in expectation, which in turn bounds the mis-clustering rate. To compute the
bound, we need to estimate the first two momentéigfwhich we discuss next.

3.3 Perturbation on the Laplacian matrix

Let D be the diagonal matrix witth; = >_, K;;. We define the normalized Laplacian matrix as

L=1-D7'K.LettingA = D — D anddK = K — K, we have the following approximation for
dL =L — L:



Lemma 2. If perturbationd K is small compared td<, then
dL = (1+0(1)) AD™2K — D dK. @)

Then, element-wise, the first two momentsidéf can be estimated as

E(dL) ~ E(A)D?K — D™'E(dK) (8)
E(dL?) ~ E(AD?KoAD?K —2D 'dK oADK + D™'dK o D™'dK)
E (A%) D™ K? 4+ D7?E (dK?) — 2E(AdK)D ? o K, 9)

whereo denotes element-wise product. The quantities needed to estiitéte andE(dL?) can

be obtained from moments and correlations among the elements of the similarity Pﬁgtri*n
particular, we have

E(dK;) = E (K ) ~ Ky, B(dK;)® =EK? —2K,E (KJ) + K2, (10)

EA; = ED,-D;, ED;=Y E (Kj) , EA2=ED? 2D, -ED; + D? (11)

j=1
2
ED? = E(Y Ky| =S ERZ+23 % (EKijEKiq n pquafjafq) (12)
j=1 =1 j=1q=j+1
B(AdK); = B(D;— D) (K — Kij) =F ([)if(ij) — DiEK;; — KijEA,
= E|K+K;| Y Kil||-DEK;—K;EA,
q=1,q#j

2 % % k k _k 7%
- ERKZ+ Y (EKijEKZ-q + pijqaijaiq) — D;EK;; — Ki;EA;, (13)
q=1,q#7
whereafj is the standard deviation (if-j and—1 < pqu < 1 is the correlation coefficient between

f(ij and&-q. Estimating allpqu/s would require an intensive effort. For simplicity, we could set
p;, to1in Eq. (12) and to-1in Eq. (13), and obtain an upper bound fZL?). This bound could
optionally be tightened by using a simulation method to estimate the valuzéﬁloﬂowever, in our
experimental work we have found that our results are insensitive to the vallpéj% ,ohnd setting
pqu = 0.5 usually achieves good results.

Remark. Egs. (8)—(13) allow us to estimate (i.e., to upper bound) the first two moments of
using those ofl K, which are computed using Eq. (15) or (16) in Section 3.4.

3.4 Perturbation on the similarity matrix

The similarity matrix’” on perturbed dat& is

. . | P
Kij:eXp <|){Z X]+€z EJH )7 (14)

whereoy, is the kernel bandwidth. Then, given d&fathe first two moments ofK;; = f(ij — Kij,
the error in the similarity matrix, can be determined by one of the following lemmas.

Lemma 3. GivenX, if all components of; ande; are i.i.d. GaussianV (0, o?), then

B (k)= (-%). B(R3) =0 <%f:) (15)

k

whereM;; () = [exp ( Nigt )/(1 - 2t)d/2], and;; = (|Jx: — x;[2/202).

1-2t

6
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Figure 6:Synthetic data sets illustrated in two dimensions.

Lemma 4. Under Assumptior, given X and for large values of the dimensiafy the first two
moments of<;; can be computed approximately as follows:

E () = (_2}7) - B(R2) =, (—(j) | (16)

k k
WhereMij (t) = exp [()\ZJ + 2d02) t+ (dﬂ4 + d04 + 402)\12]) tz], andAij = ||Xl — Xj||2.

Remark. (i) Given data perturbation errer, kernel bandwidtlr;, and dataX, the first two mo-
ments ofdK;; can be estimated directly using (15) or (16). (ii) Through Egs. (1)-(16), we have
established a relationship between the mis-clusteringrated the data perturbation magnituge

By inverting this relationship (e.g., using binary search), we can determitida a givenn*.

4 Evaluation

In this section we present an empirical evaluation of our analysis on 3 synthetic data sets (see Fig. 6)
and 6 real data sets from the UCI repository [14]. The data domains are diverse, including im-
age, medicine, agriculture, etc., and the different data sets impose different difficulty levels on the
underlying spectral clustering algorithm, demonstrating the wide applicability of our analysis.

In the experiments, we use data quantization as the perturbation scheme to evaluate the upper bound
provided by our analysis on the clustering error. Fig. 7 plots the mis-clustering rate and the upper
bound for data sets subject to varying degrees of quantization. As expected, the mis-clustering
rate increases as one decreases the number of quantization bits. We find that the error bounds are
remarkably tight, which validate the assumptions we make in the analysis. It is also interesting to
note that even when using as few as 3-4 bits, the clustering degrades very little in both real error and
as assessed by our bound. The effectiveness of our bound should allow the practitioner to determine
the right amount of quantization given a permitted loss in clustering performance.

5 Conclusion

In this paper, we proposed a theoretical analysis of the clustering error for spectral clustering in the

face of stochastic perturbations. Our experimental evaluation has provided support for the assump-
tions made in the analysis, showing that the bound is tight under conditions of practical interest. We

believe that our work, which provides an analytical relationship between the mis-clustering rate and

the variance of the perturbation, constitutes a critical step towards enabling a large class of appli-

cations that seek to perform clustering of objects, machines, data, etc in a distributed environment.
Many networks are bandwidth constrained, and our methods can guide the process of data thinning
so as to limit the amount of data transmitted through the network for the purpose of clustering.
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