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Abstract

We present simple and computationally efficient nonparametric estimators of
Rényi entropy and mutual information based on an i.i.d. sample drawn from an
unknown, absolutely continuous distribution over Rd. The estimators are cal-
culated as the sum of p-th powers of the Euclidean lengths of the edges of the
‘generalized nearest-neighbor’ graph of the sample and the empirical copula of
the sample respectively. For the first time, we prove the almost sure consistency
of these estimators and upper bounds on their rates of convergence, the latter of
which under the assumption that the density underlying the sample is Lipschitz
continuous. Experiments demonstrate their usefulness in independent subspace
analysis.

1 Introduction

We consider the nonparametric problem of estimating Rényi α-entropy and mutual information (MI)
based on a finite sample drawn from an unknown, absolutely continuous distribution over Rd. There
are many applications that make use of such estimators, of which we list a few to give the reader
a taste: Entropy estimators can be used for goodness-of-fit testing (Vasicek, 1976; Goria et al.,
2005), parameter estimation in semi-parametric models (Wolsztynski et al., 2005), studying fractal
random walks (Alemany and Zanette, 1994), and texture classification (Hero et al., 2002b,a). Mu-
tual information estimators have been used in feature selection (Peng and Ding, 2005), clustering
(Aghagolzadeh et al., 2007), causality detection (Hlaváckova-Schindler et al., 2007), optimal exper-
imental design (Lewi et al., 2007; Póczos and Lőrincz, 2009), fMRI data processing (Chai et al.,
2009), prediction of protein structures (Adami, 2004), or boosting and facial expression recogni-
tion (Shan et al., 2005). Both entropy estimators and mutual information estimators have been used
for independent component and subspace analysis (Learned-Miller and Fisher, 2003; Póczos and
Lőrincz, 2005; Hulle, 2008; Szabó et al., 2007), and image registration (Kybic, 2006; Hero et al.,
2002b,a). For further applications, see Leonenko et al. (2008); Wang et al. (2009a).

In a naı̈ve approach to Rényi entropy and mutual information estimation, one could use the so called
“plug-in” estimates. These are based on the obvious idea that since entropy and mutual information
are determined solely by the density f (and its marginals), it suffices to first estimate the density
using one’s favorite density estimate which is then “plugged-in” into the formulas defining entropy
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and mutual information. The density is, however, a nuisance parameter which we do not want to
estimate. Density estimators have tunable parameters and we may need cross validation to achieve
good performance.

The entropy estimation algorithm considered here is direct—it does not build on density estimators.
It is based on k-nearest-neighbor (NN) graphs with a fixed k. A variant of these estimators, where
each sample point is connected to its k-th nearest neighbor only, were recently studied by Goria
et al. (2005) for Shannon entropy estimation (i.e. the special case α = 1) and Leonenko et al.
(2008) for Rényi α-entropy estimation. They proved the weak consistency of their estimators under
certain conditions. However, their proofs contain some errors, and it is not obvious how to fix them.
Namely, Leonenko et al. (2008) apply the generalized Helly-Bray theorem, while Goria et al. (2005)
apply the inverse Fatou lemma under conditions when these theorems do not hold. This latter error
originates from the article of Kozachenko and Leonenko (1987), and this mistake can also be found
in Wang et al. (2009b).

The first main contribution of this paper is to give a correct proof of consistency of these estimators.
Employing a very different proof techniques than the papers mentioned above, we show that these
estimators are, in fact, strongly consistent provided that the unknown density f has bounded support
and α ∈ (0, 1). At the same time, we allow for more general nearest-neighbor graphs, wherein
as opposed to connecting each point only to its k-th nearest neighbor, we allow each point to be
connected to an arbitrary subset of its k nearest neighbors. Besides adding generality, our numer-
ical experiments seem to suggest that connecting each sample point to all its k nearest neighbors
improves the rate of convergence of the estimator.

The second major contribution of our paper is that we prove a finite-sample high-probability bound
on the error (i.e. the rate of convergence) of our estimator provided that f is Lipschitz. According
to the best of our knowledge, this is the very first result that gives a rate for the estimation of Rényi
entropy. The closest to our result in this respect is the work by Tsybakov and van der Meulen
(1996) who proved the root-n consistency of an estimator of the Shannon entropy and only in one
dimension.

The third contribution is a strongly consistent estimator of Rényi mutual information that is based on
NN graphs and the empirical copula transformation (Dedecker et al., 2007). This result is proved for
d ≥ 3 1 and α ∈ (1/2, 1). This builds upon and extends the previous work of Póczos et al. (2010)
where instead of NN graphs, the minimum spanning tree (MST) and the shortest tour through the
sample (i.e. the traveling salesman problem, TSP) were used, but it was only conjectured that NN
graphs can be applied as well.

There are several advantages of using k-NN graph over MST and TSP (besides the obvious concep-
tual simplicity of k-NN): On a serial computer the k-NN graph can be computed somewhat faster
than MST and much faster than the TSP tour. Furthermore, in contrast to MST and TSP, computa-
tion of k-NN can be easily parallelized. Secondly, for different values of α, MST and TSP need to
be recomputed since the distance between two points is the p-th power of their Euclidean distance
where p = d(1 − α). However, the k-NN graph does not change for different values of p, since
p-th power is a monotone transformation, and hence the estimates for multiple values of α can be
calculated without the extra penalty incurred by the recomputation of the graph. This can be advan-
tageous e.g. in intrinsic dimension estimators of manifolds (Costa and Hero, 2003), where p is a free
parameter, and thus one can calculate the estimates efficiently for a few different parameter values.

The fourth major contribution is a proof of a finite-sample high-probability error bound (i.e. the rate
of convergence) for our mutual information estimator which holds under the assumption that the
copula of f is Lipschitz. According to the best of our knowledge, this is the first result that gives a
rate for the estimation of Rényi mutual information.

The toolkit for proving our results derives from the deep literature of Euclidean functionals, see,
(Steele, 1997; Yukich, 1998). In particular, our strong consistency result uses a theorem due to Red-
mond and Yukich (1996) that essentially states that any quasi-additive power-weighted Euclidean
functional can be used as a strongly consistent estimator of Rényi entropy (see also Hero and Michel
1999). We also make use of a result due to Koo and Lee (2007), who proved a rate of convergence
result that holds under more stringent conditions. Thus, the main thrust of the present work is show-

1Our result for Rényi entropy estimation holds for d = 1 and d = 2, too.
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ing that these conditions hold for p-power weighted nearest-neighbor graphs. Curiously enough, up
to now, no one has shown this, except for the case when p = 1, which is studied in Section 8.3 of
(Yukich, 1998). However, the condition p = 1 gives results only for α = 1− 1/d.

Unfortunately, the space limitations do not allow us to present any of our proofs, so we relegate them
into the extended version of this paper (Pál et al., 2010). We instead try to give a clear explanation
of Rényi entropy and mutual information estimation problems, the estimation algorithms and the
statements of our converge results.

Additionally, we report on two numerical experiments. In the first experiment, we compare the
empirical rates of convergence of our estimators with our theoretical results and plug-in estimates.
Empirically, the NN methods are the clear winner. The second experiment is an illustrative applica-
tion of mutual information estimation to an Independent Subspace Analysis (ISA) task.

The paper is organized as follows: In the next section, we formally define Rényi entropy and Rényi
mutual information and the problem of their estimation. Section 3 explains the ‘generalized nearest
neighbor’ graphs. This graph is then used in Section 4 to define our Rényi entropy estimator. In
the same section, we state a theorem containing our convergence results for this estimator (strong
consistency and rates). In Section 5, we explain the copula transformation, which connects Rényi
entropy with Rényi mutual information. The copula transformation together with the Rényi entropy
estimator from Section 4 is used to build an estimator of Rényi mutual information. We conclude
this section with a theorem stating the convergence properties of the estimator (strong consistency
and rates). Section 6 contains the numerical experiments. We conclude the paper by a detailed
discussion of further related work in Section 7, and a list of open problems and directions for future
research in Section 8.

2 The Formal Definition of the Problem

Rényi entropy and Rényi mutual information of d real-valued random variables2 X =
(X1, X2, . . . , Xd) with joint density f : Rd → R and marginal densities fi : R → R, 1 ≤ i ≤ d,
are defined for any real parameter α assuming the underlying integrals exist. For α 6= 1, Rényi
entropy and Rényi mutual information are defined respectively as3

Hα(X) = Hα(f) =
1

1− α
log

∫
Rd

fα(x1, x2, . . . , xd) d(x1, x2, . . . , xd) , (1)

Iα(X) = Iα(f) =
1

α− 1
log

∫
Rd

fα(x1, x2, . . . , xd)

(
d∏
i=1

fi(x
i)

)1−α

d(x1, x2, . . . , xd). (2)

For α = 1 they are defined by the limits H1 = limα→1Hα and I1 = limα→1 Iα. In fact, Shannon
(differential) entropy and the Shannon mutual information are just special cases of Rényi entropy
and Rényi mutual information with α = 1.

The goal of this paper is to present estimators of Rényi entropy (1) and Rényi information (2) and
study their convergence properties. To be more explicit, we consider the problem where we are
given i.i.d. random variables X1:n = (X1,X2, . . . ,Xn) where each Xj = (X1

j , X
2
j , . . . , X

d
j ) has

density f : Rd → R and marginal densities fi : R → R and our task is to construct an estimate
Ĥα(X1:n) of Hα(f) and an estimate Îα(X1:n) of Iα(f) using the sample X1:n.

3 Generalized Nearest-Neighbor Graphs

The basic tool to define our estimators is the generalized nearest-neighbor graph and more specifi-
cally the sum of the p-th powers of Euclidean lengths of its edges.

Formally, let V be a finite set of points in an Euclidean space Rd and let S be a finite non-empty
set of positive integers; we denote by k the maximum element of S. We define the generalized

2We use superscript for indexing dimension coordinates.
3The base of the logarithms in the definition is not important; any base strictly bigger than 1 is allowed.

Similarly as with Shannon entropy and mutual information, one traditionally uses either base 2 or e. In this
paper, for definitiveness, we stick to base e.
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nearest-neighbor graph NNS(V ) as a directed graph on V . The edge set of NNS(V ) contains
for each i ∈ S an edge from each vertex x ∈ V to its i-th nearest neighbor. That is, if we sort
V \{x} = {y1,y2, . . . ,y|V |−1} according to the Euclidean distance to x (breaking ties arbitrarily):
‖x− y1‖ ≤ ‖x− y2‖ ≤ · · · ≤ ‖x− y|V |−1‖ then yi is the i-th nearest-neighbor of x and for each
i ∈ S there is an edge from x to yi in the graph.

For p ≥ 0 let us denote by Lp(V ) the sum of the p-th powers of Euclidean lengths of its edges.
Formally,

Lp(V ) =
∑

(x,y)∈E(NNS(V ))

‖x− y‖p , (3)

where E(NNS(V )) denotes the edge set of NNS(V ). We intentionally hide the dependence on S
in the notation Lp(V ). For the rest of the paper, the reader should think of S as a fixed but otherwise
arbitrary finite non-empty set of integers, say, S = {1, 3, 4}.
The following is a basic result about Lp. The proof can be found in Pál et al. (2010).
Theorem 1 (Constant γ). Let X1:n = (X1,X2, . . . ,Xn) be an i.i.d. sample from the uniform
distribution over the d-dimensional unit cube [0, 1]d. For any p ≥ 0 and any finite non-empty set S
of positive integers there exists a constant γ > 0 such that

lim
n→∞

Lp(X1:n)

n1−p/d = γ a.s. (4)

The value of γ depends on d, p, S and, except for special cases, an analytical formula for its value is
not known. This causes a minor problem since the constant γ appears in our estimators. A simple
and effective way to deal with this problem is to generate a large i.i.d. sample X1:n from the uniform
distribution over [0, 1]d and estimate γ by the empirical value of Lp(X1:n)/n1−p/d.

4 An Estimator of Rényi Entropy

We are now ready to present an estimator of Rényi entropy based on the generalized nearest-neighbor
graph. Suppose we are given an i.i.d. sample X1:n = (X1,X2, . . . ,Xn) from a distribution µ over
Rd with density f . We estimate entropy Hα(f) for α ∈ (0, 1) by

Ĥα(X1:n) =
1

1− α
log

Lp(X1:n)

γn1−p/d where p = d(1− α), (5)

and Lp(·) is the sum of p-th powers of Euclidean lengths of edges of the nearest-neighbor graph
NNS(·) for some finite non-empty S ⊂ N+ as defined by equation (3). The constant γ is the same
as in Theorem 1.

The following theorem is our main result about the estimator Ĥα. It states that Ĥα is strongly
consistent and gives upper bounds on the rate of convergence. The proof of theorem is in Pál et al.
(2010).

Theorem 2 (Consistency and Rate for Ĥα). Let α ∈ (0, 1). Let µ be an absolutely continuous
distribution over Rd with bounded support and let f be its density. If X1:n = (X1,X2, . . . ,Xn) is
an i.i.d. sample from µ then

lim
n→∞

Ĥα(X1:n) = Hα(f) a.s. (6)

Moreover, if f is Lipschitz then for any δ > 0 with probability at least 1− δ,∣∣∣Ĥα(X1:n)−Hα(f)
∣∣∣ ≤

O
(
n−

d−p
d(2d−p) (log(1/δ))1/2−p/(2d)

)
, if 0 < p < d− 1 ;

O
(
n−

d−p
d(d+1) (log(1/δ))1/2−p/(2d)

)
, if d− 1 ≤ p < d .

(7)

5 Copulas and Estimator of Mutual Information

Estimating mutual information is slightly more complicated than estimating entropy. We start with a
basic property of mutual information which we call rescaling. It states that if h1, h2, . . . , hd : R→
R are arbitrary strictly increasing functions, then

Iα(h1(X1), h2(X2), . . . , hd(X
d)) = Iα(X1, X2, . . . , Xd) . (8)
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A particularly clever choice is hj = Fj for all 1 ≤ j ≤ d, where Fj is the cumulative distribution
function (c.d.f.) of Xj . With this choice, the marginal distribution of hj(Xj) is the uniform distri-
bution over [0, 1] assuming that Fj , the c.d.f. of Xj , is continuous. Looking at the definition of Hα

and Iα we see that

Iα(X1, X2, . . . , Xd) = Iα(F1(X1), F2(X2), . . . , Fd(X
d)) = −Hα(F1(X1), F2(X2), . . . , Fd(X

d)) .

In other words, calculation of mutual information can be reduced to the calculation of entropy pro-
vided that marginal c.d.f.’s F1, F2, . . . , Fd are known. The problem is, of course, that these are not
known and need to be estimated from the sample. We will use empirical c.d.f.’s (F̂1, F̂2, . . . , F̂d)
as their estimates. Given an i.i.d. sample X1:n = (X1,X2, . . . ,Xn) from distribution µ and with
density f , the empirical c.d.f’s are defined as

F̂j(x) =
1

n
|{i : 1 ≤ i ≤ n, x ≤ Xj

i }| for x ∈ R, 1 ≤ j ≤ d .

Introduce the compact notation F : Rd → [0, 1]d, F̂ : Rd → [0, 1]d,

F(x1, x2, . . . , xd) = (F1(x1), F2(x2), . . . , Fd(x
d)) for (x1, x2, . . . , xd) ∈ Rd ; (9)

F̂(x1, x2, . . . , xd) = (F̂1(x1), F̂2(x2), . . . , F̂d(x
d)) for (x1, x2, . . . , xd) ∈ Rd . (10)

Let us call the maps F, F̂ the copula transformation, and the empirical copula transformation,
respectively. The joint distribution of F(X) = (F1(X1), F2(X2), . . . , Fd(X

d)) is called the copula
of µ, and the sample (Ẑ1, Ẑ2, . . . , Ẑn) = (F̂(X1), F̂(X2), . . . , F̂(Xn)) is called the empirical
copula (Dedecker et al., 2007). Note that j-th coordinate of Ẑi equals

Ẑji =
1

n
rank(Xj

i , {X
j
1 , X

j
2 , . . . , X

j
n}) ,

where rank(x,A) is the number of element of A less than or equal to x. Also, observe
that the random variables Ẑ1, Ẑ2, . . . , Ẑn are not even independent! Nonetheless, the empiri-
cal copula (Ẑ1, Ẑ2, . . . , Ẑn) is a good approximation of an i.i.d. sample (Z1,Z2, . . . ,Zn) =
(F(X1),F(X2), . . . ,F(Xn)) from the copula of µ. Hence, we estimate the Rényi mutual infor-
mation Iα by

Îα(X1:n) = −Ĥα(Ẑ1, Ẑ2, . . . , Ẑn), (11)

where Ĥα is defined by (5). The following theorem is our main result about the estimator Îα. It
states that Îα is strongly consistent and gives upper bounds on the rate of convergence. The proof of
this theorem can be found in Pál et al. (2010).

Theorem 3 (Consistency and Rate for Îα). Let d ≥ 3 and α = 1 − p/d ∈ (1/2, 1). Let µ be an
absolutely continuous distribution over Rd with density f . If X1:n = (X1,X2, . . . ,Xn) is an i.i.d.
sample from µ then

lim
n→∞

Îα(X1:n) = Iα(f) a.s.

Moreover, if the density of the copula of µ is Lipschitz, then for any δ > 0 with probability at least
1− δ,

∣∣∣Îα(X1:n) − Iα(f)
∣∣∣ ≤


O
(

max{n−
d−p

d(2d−p) , n−p/2+p/d}(log(1/δ))1/2
)
, if 0 < p ≤ 1 ;

O
(

max{n−
d−p

d(2d−p) , n−1/2+p/d}(log(1/δ))1/2
)
, if 1 ≤ p ≤ d− 1 ;

O
(

max{n−
d−p

d(d+1) , n−1/2+p/d}(log(1/δ))1/2
)
, if d− 1 ≤ p < d .

6 Experiments

In this section we show two numerical experiments to support our theoretical results about the con-
vergence rates, and to demonstrate the applicability of the proposed Rényi mutual information esti-
mator, Îα.
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6.1 The Rate of Convergence

In our first experiment (Fig. 1), we demonstrate that the derived rate is indeed an upper bound on
the convergence rate. Figure 1a-1c show the estimation error of Îα as a function of the sample
size. Here, the underlying distribution was a 3D uniform, a 3D Gaussian, and a 20D Gaussian with
randomly chosen nontrivial covariance matrices, respectively. In these experiments α was set to 0.7.
For the estimation we used S = {3} (kth) and S = {1, 2, 3} (knn) sets. Our results also indicate that
these estimators achieve better performances than the histogram based plug-in estimators (hist). The
number and the sizes of the bins were determined with the rule of Scott (1979). The histogram based
estimator is not shown in the 20D case, as in this large dimension it is not applicable in practice. The
figures are based on averaging 25 independent runs, and they also show the theoretical upper bound
(Theoretical) on the rate derived in Theorem 3. It can be seen that the theoretical rates are rather
conservative. We think that this is because the theory allows for quite irregular densities, while the
densities considered in this experiment are very nice.
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Figure 1: Error of the estimated Rényi informations in the number of samples.

6.2 Application to Independent Subspace Analysis

An important application of dependence estimators is the Independent Subspace Analysis problem
(Cardoso, 1998). This problem is a generalization of the Independent Component Analysis (ICA),
where we assume the independent sources are multidimensional vector valued random variables.
The formal description of the problem is as follows. We have S = (S1; . . . ;Sm) ∈ Rdm, m inde-
pendent d-dimensional sources, i.e. Si ∈ Rd, and I(S1, . . . ,Sm) = 0.4 In the ISA statistical model
we assume that S is hidden, and only n i.i.d. samples from X = AS are available for observation,
where A ∈ Rq×dm is an unknown invertible matrix with full rank and q ≥ dm. Based on n i.i.d.
observation of X, our task is to estimate the hidden sources Si and the mixing matrix A. Let the
estimation of S be denoted by Y = (Y1; . . . ;Ym) ∈ Rdm, where Y = WX. The goal of ISA is
to calculate argminWI(Y1, . . . ,Ym), where W ∈ Rdm×q is a matrix with full rank. Following the
ideas of Cardoso (1998), this ISA problem can be solved by first preprocessing the observed quan-
tities X by a traditional ICA algorithm which provides us WICA estimated separation matrix5, and
then simply grouping the estimated ICA components into ISA subspaces by maximizing the sum of
the MI in the estimated subspaces, that is we have to find a permutation matrix P ∈ {0, 1}dm×dm
which solves

max
P

m∑
j=1

I(Y j1 , Y
j
2 , . . . , Y

j
d ) . (12)

where Y = PWICAX. We used the proposed copula based information estimation, Îα with
α = 0.99 to approximate the Shannon mutual information, and we chose S = {1, 2, 3}. Our
experiment shows that this ISA algorithm using the proposed MI estimator can indeed provide good

4Here we need the generalization of MI to multidimensional quantities, but that is obvious by simply re-
placing the 1D marginals by d-dimensional ones.

5for simplicity we used the FastICA algorithm in our experiments (Hyvärinen et al., 2001)

6



estimation of the ISA subspaces. We used a standard ISA benchmark dataset from Szabó et al.
(2007); we generated 2,000 i.i.d. sample points on 3D geometric wireframe distributions from 6
different sources independently from each other. These sampled points can be seen in Fig. 2a, and
they represent the sources, S. Then we mixed these sources by a randomly chosen invertible matrix
A ∈ R18×18. The six 3-dimensional projections of X = AS observed quantities are shown in
Fig. 2b. Our task was to estimate the original sources S using the sample of the observed quantity
X only. By estimating the MI in (12), we could recover the original subspaces as it can be seen
in Fig. 2c. The successful subspace separation is shown in the form of Hinton diagrams as well,
which is the product of the estimated ISA separation matrix W = PWICA and A. It is a block
permutation matrix if and only if the subspace separation is perfect (Fig. 2d).

(a) Original (b) Mixed (c) Estimated (d) Hinton

Figure 2: ISA experiment for six 3-dimensional sources.

7 Further Related Works

As it was pointed out earlier, in this paper we heavily built on the results known from the theory of
Euclidean functionals (Steele, 1997; Redmond and Yukich, 1996; Koo and Lee, 2007). However,
now we can be more precise about earlier work concerning nearest-neighbor based Euclidean func-
tionals: The closest to our work is Section 8.3 of Yukich (1998), where the case of NNS graph
based p-power weighted Euclidean functionals with S = {1, 2, . . . , k} and p = 1 was investigated.

Nearest-neighbor graphs have first been proposed for Shannon entropy estimation by Kozachenko
and Leonenko (1987). In particular, in the mentioned work only the case of NNS graphs with
S = {1} was considered. More recently, Goria et al. (2005) generalized this approach to S = {k}
and proved the resulting estimator’s weak consistency under some conditions on the density. The
estimator in this paper has a form quite similar to that of ours:

H̃1 = log(n− 1)− ψ(k) + log

(
2πd/2

dΓ(d/2)

)
+
d

n

n∑
i=1

log ‖ei‖ .

Here ψ stands for the digamma function, and ei is the directed edge pointing from Xi to its kth
nearest-neighbor. Comparing this with (5), unsurprisingly, we find that the main difference is the
use of the logarithm function instead of | · |p and the different normalization. As mentioned before,
Leonenko et al. (2008) proposed an estimator that uses theNNS graph with S = {k} for the purpose
of estimating the Rényi entropy. Their estimator takes the form

H̃α =
1

1− α
log

(
n− 1

n
V 1−α
d C1−α

k

n∑
i=1

‖ei‖d(1−α)

(n− 1)α

)
,

where Γ stands for the Gamma function, Ck =
[

Γ(k)
Γ(k+1−α)

]1/(1−α)

and Vd = πd/2Γ(d/2 + 1)

is the volume of the d-dimensional unit ball, and again ei is the directed edge in the NNS graph
starting from node Xi and pointing to the k-th nearest node. Comparing this estimator with (5),
it is apparent that it is (essentially) a special case of our NNS based estimator. From the results
of Leonenko et al. (2008) it is obvious that the constant γ in (5) can be found in analytical form
when S = {k}. However, we kindly warn the reader again that the proofs of these last three cited
articles (Kozachenko and Leonenko, 1987; Goria et al., 2005; Leonenko et al., 2008) contain a few
errors, just like the Wang et al. (2009b) paper for KL divergence estimation from two samples.
Kraskov et al. (2004) also proposed a k-nearest-neighbors based estimator for the Shannon mutual
information estimation, but the theoretical properties of their estimator are unknown.
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8 Conclusions and Open Problems

We have studied Rényi entropy and mutual information estimators based on NNS graphs. The
estimators were shown to be strongly consistent. In addition, we derived upper bounds on their
convergence rate under some technical conditions. Several open problems remain unanswered:

An important open problem is to understand how the choice of the set S ⊂ N+ affects our estimators.
Perhaps, there exists a way to choose S as a function of the sample size n (and d, p) which strikes
the optimal balance between the bias and the variance of our estimators.

Our method can be used for estimation of Shannon entropy and mutual information by simply using
α close to 1. The open problem is to come up with a way of choosing α, approaching 1, as a
function of the sample size n (and d, p) such that the resulting estimator is consistent and converges
as rapidly as possible. An alternative is to use the logarithm function in place of the power function.
However, the theory would need to be changed significantly to show that the resulting estimator
remains strongly consistent.

In the proof of consistency of our mutual information estimator Îα we used Kiefer-Dvoretzky-
Wolfowitz theorem to handle the effect of the inaccuracy of the empirical copula transformation
(see Pál et al. (2010) for details). Our particular use of the theorem seems to restrict α to the interval
(1/2, 1) and the dimension to values larger than 2. Is there a better way to estimate the error caused
by the empirical copula transformation and prove consistency of the estimator for a larger range of
α’s and d = 1, 2?

Finally, it is an important open problem to prove bounds on converge rates for densities that have
higher order smoothness (i.e. β-Hölder smooth densities). A related open problem, in the context of
of theory of Euclidean functionals, is stated in Koo and Lee (2007).
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