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Abstract

Many statistical M -estimators are based on convex optimization problems
formed by the weighted sum of a loss function with a norm-based regular-
izer. We analyze the convergence rates of first-order gradient methods for
solving such problems within a high-dimensional framework that allows the
data dimension d to grow with (and possibly exceed) the sample size n.
This high-dimensional structure precludes the usual global assumptions—
namely, strong convexity and smoothness conditions—that underlie clas-
sical optimization analysis. We define appropriately restricted versions of
these conditions, and show that they are satisfied with high probability
for various statistical models. Under these conditions, our theory guaran-
tees that Nesterov’s first-order method [12] has a globally geometric rate
of convergence up to the statistical precision of the model, meaning the
typical Euclidean distance between the true unknown parameter θ∗ and

the optimal solution θ̂. This globally linear rate is substantially faster than
previous analyses of global convergence for specific methods that yielded
only sublinear rates. Our analysis applies to a wide range of M -estimators
and statistical models, including sparse linear regression using Lasso (`1-
regularized regression), group Lasso, block sparsity, and low-rank matrix
recovery using nuclear norm regularization. Overall, this result reveals an
interesting connection between statistical precision and computational effi-
ciency in high-dimensional estimation.

1 Introduction

High-dimensional data sets present challenges that are both statistical and computational in
nature. On the statistical side, recent years have witnessed a flurry of results on consistency
and rates for various estimators under high-dimensional scaling, meaning that the data
dimension d and other structural parameters are allowed to grow with the sample size
n. These results typically involve some assumption regarding the underlying structure of
the parameter space, including sparse vectors, low-rank matrices, or structured regression
functions, as well as some regularity conditions on the data-generating process. On the
computational side, many estimators for statistical recovery are based on solving convex
programs. Examples of such M -estimators include `1-regularized quadratic programming
(Lasso), second-order cone programs for sparse non-parametric regression, and semidefinite
programming relaxations for low-rank matrix recovery.

In parallel, a line of recent work (e.g., [3, 7, 6, 5, 12, 18]) focuses on polynomial-time
algorithms for solving these types of convex programs. Several authors [2, 6, 1] have used
variants of Nesterov’s accelerated gradient method [12] to obtain algorithms with a global
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sublinear rate of convergence. For the special case of compressed sensing (sparse regression
with incoherent design), some authors have established fast convergence rates in a local
sense–once the iterates are close enough to the optimum [3, 5]. Other authors have studied
finite convergence of greedy algorithms (e.g., [18]). If an algorithm identifies the support
set of the optimal solution, the problem is then effectively reduced to the lower-dimensional
subspace, and thus fast convergence can be guaranteed in a local sense. Also in application to
compressed sensing, Garg and Khandekar [4] showed that a thresholded gradient algorithm
converges rapidly up to some tolerance; we discuss this result in more detail following our
Corollary 2 on this special case of sparse linear models.

Unfortunately, for general convex programs with only Lipschitz conditions, the best conver-
gence rates in a global sense using first-order methods are sub-linear. Much faster global
rates—in particular, at a linear or geometric rate—can be achieved if global regularity condi-
tions like strong convexity and smoothness are imposed [11]. However, a challenging aspect
of statistical estimation in high dimensions is that the underlying optimization problems
can never be globally strongly convex when d > n in typical cases (since the d × d Hessian
matrix is rank-deficient), and global smoothness conditions cannot hold when d/n → +∞.

In this paper, we analyze a simple variant of the composite gradient method due to
Nesterov [12] in application to the optimization problems that underlie regularized M -
estimators. Our main contribution is to establish a form of global geometric convergence for
this algorithm that holds for a broad class of high-dimensional statistical problems. We do
so by leveraging the notion of restricted strong convexity, used in recent work by Negahban
et al. [8] to derive various bounds on the statistical error in high-dimensional estimation.
Our analysis consists of two parts. We first establish that for optimization problems un-
derlying such M -estimators, appropriately modified notions of restricted strong convexity
(RSC) and smoothness (RSM) suffice to establish global linear convergence of a first-order
method. Our second contribution is to prove that for the iterates generated by our first-
order method, these RSC/RSM assumptions do indeed hold with high probability for a
broad class of statistical models, among them sparse linear regression, group-sparse regres-
sion, matrix completion, and estimation in generalized linear models. We note in passing
that our notion of RSC is related to but slightly different than its previous use for bounding
statistical error [8], and hence we cannot use these existing results directly.

An interesting aspect of our results is that we establish global geometric convergence only up

to the statistical precision of the problem, meaning the typical Euclidean distance ‖θ̂− θ∗‖
between the true parameter θ∗ and the estimate θ̂ obtained by solving the optimization
problem. Note that this is very natural from the statistical perspective, since it is the true

parameter θ∗ itself (as opposed to the solution θ̂ of the M -estimator) that is of primary
interest, and our analysis allows us to approach it as close as is statistically possible. Over-
all, our results reveal an interesting connection between the statistical and computational
properties of M -estimators—that is, the properties of the underlying statistical model that
make it favorable for estimation also render it more amenable to optimization procedures.

The remainder of the paper is organized as follows. In the following section, we give a precise
description of the M -estimators considered here, provide definitions of restricted strong
convexity and smoothness, and their link to the notion of statistical precision. Section 3
gives a statement of our main result, as well as its corollaries when specialized to various
statistical models. Section 4 provides some simulation results that confirm the accuracy of
our theoretical predictions. Due to space constraints, we refer the reader to the full-length
version of our paper for technical details.

2 Problem formulation and optimization algorithm

In this section, we begin by describing the class of regularized M -estimators to which our
analysis applies, as well as the optimization algorithms that we analyze. Finally, we describe
the assumptions that underlie our main result.

2



A class of regularized M-estimators: Given a random variable Z ∼ P taking values
in some set Z, let Zn

1 = {Z1, . . . , Zn} be a collection of n observations drawn i.i.d. from
P. Assuming that P lies within some indexed family {Pθ, θ ∈ Ω}, the goal is to recover an
estimate of the unknown true parameter θ∗ ∈ Ω generating the data. In order to do so, we
consider the regularized M -estimator

θ̂λn
∈ argmin

θ∈Ω

{
L(θ;Zn

1 ) + λnR(θ)
}
, (1)

where L : Ω×Zn 7→ R is a loss function, and R : Ω 7→ R+ is a non-negative regularizer on
the parameter space. Throughout this paper, we assume that the loss function L is convex
and differentiable, and that the regularizer R is a norm. In order to assess the quality of

an estimate, we measure the error ‖θ̂λn
− θ∗‖ in some norm induced by an inner product

〈·, ·〉 on the parameter space. Typical choices are the standard Euclidean inner product and
`2-norm for vectors; the trace inner product and the Frobenius norm for matrices; and the
L2(P) inner product and norm for non-parametric regression. As described in more detail
in Section 3.2, a variety of estimators—among them the Lasso, structured non-parametric
regression in RKHS, and low-rank matrix recovery—can be cast in this form (1). When the
data Zn

1 are clear from the context, we frequently use the shorthand L(·) for L(·;Zn
1 ).

Composite objective minimization: In general, we expect the loss function L to be
differentiable, while the regularizer R can be non-differentiable. Nesterov [12] proposed a
simple first-order method to exploit this type of structure, and our focus is a slight variant
of this procedure. In particular, given some initialization θ0 ∈ Ω, consider the update

θt+1 = arg min
θ∈BR(ρ)

{
〈∇L(θt), θ〉+ λnR(θ) +

γu
2
‖θ − θt‖22

}
, for t = 0, 1, 2, . . ., (2)

where γu > 0 is a parameter related to the smoothness of the loss function, and

BR(ρ) :=
{
θ ∈ Ω | R(θ) ≤ ρ

}
(3)

is the ball of radius ρ in the norm defined by the regularizer. The only difference from
Nesterov’s method is the additional constraint θ ∈ BR(ρ), which is required for control
of early iterates in the high-dimensional setting. Parts of our theory apply to arbitrary
choices of the radius ρ; for obtaining results that are statistically order-optimal, a setting
ρ = Θ(R(θ∗)) with θ∗ ∈ BR(ρ) is sufficient, so that fairly conservative upper bounds on
R(θ∗) are adequate.

Structural conditions in high dimensions: It is known that under global smoothness
and strong convexity assumptions, the procedure (2) enjoys a globally geometric convergence

rate, meaning that there is some α ∈ (0, 1) such that ‖θt − θ̂‖ = O(αt) for all iterations
t = 0, 1, 2, . . . (e.g., see Theorem 5 in Nesterov [12]). Unfortunately, in the high-dimensional
setting (d > n), it is usually impossible to guarantee strong convexity of the problem (1) in
a global sense. For instance, when the data is drawn i.i.d., the loss function consists of a
sum of n terms. The resulting d× d Hessian matrix ∇2L(θ;Zn

1 ) is often a sum of n rank-1
terms and hence rank-degenerate whenever n < d. However, as we show in this paper, in
order to obtain fast convergence rates for an optimization method, it is sufficient that (a)
the objective is strongly convex and smooth in a restricted set of directions, and (b) the

algorithm approaches the optimum θ̂ only along these directions.

Let us now formalize this intuition. Consider the first-order Taylor series expansion of the
loss function around the point θ′ in the direction of θ:

TL(θ; θ′) := L(θ) − L(θ′)− 〈∇L(θ′), θ − θ′〉. (4)

Definition 1 (Restricted strong convexity (RSC)). We say the loss function L
satisfies the RSC condition with strictly positive parameters (γ`, κ`, δ) if

TL(θ; θ′) ≥
γ`
2
‖θ − θ′‖2 − κ`δ

2 for all θ, θ′ ∈ BR(ρ). (5)
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In order to gain intuition for this definition, first consider the degenerate setting δ = κ` = 0.
In this case, imposing the condition (5) for all θ ∈ Ω is equivalent to the usual definition
of strong convexity on the optimization set. In contrast, when the pair (δ, κ`) are strictly
positive, the condition (5) only applies to a limited set of vectors. In particular, when θ′ is

set equal to the optimum θ̂, and we assume that θ belongs to the set

C := BR(ρ) ∩
{
θ ∈ Ω | ‖θ − θ̂‖2 ≥ 4κ`

γ`
δ2
}
,

then condition (5) implies that TL(θ; θ̂) ≥ γ`

4 ‖θ− θ̂‖2 for all θ ∈ C. Thus, for any feasible θ

that is not too close to the optimum θ̂, we are guaranteed strong convexity in the direction

θ − θ̂.

We now specify an analogous notion of restricted smoothness:

Definition 2 (Restricted smoothness (RSM)). We say the loss function L satisfies
the RSM condition with strictly positive parameters (γu, κu, δ) if

TL(θ; θ̂) ≤
γu
2
‖θ − θ̂‖2 + κuδ

2 for all θ ∈ BR(ρ). (6)

Note that the tolerance parameter δ is the same as that in the definition (5). The additional
term κuδ

2 is not present in analogous smoothness conditions in the optimization literature,
but it is essential in our set-up.

Loss functions and statistical precision: In order for these definitions to be sensi-
ble and of practical interest, it remains to clarify two issues. First, for what types of loss
function and regularization pairs can we expect RSC/RSM to hold? Second, what is the
smallest tolerance δ with which they can hold? Past work by Negahban et al. [8] has intro-
duced the class of decomposable regularizers ; it includes various regularizers frequently used
in M -estimation, among them `1-norm regularization, block-sparse regularization, nuclear
norm regularization, and various combinations of such norms. Negahban et al. [8] showed
that versions of RSC with respect to θ∗ hold for suitable loss functions combined with a
decomposable regularizer. The definition of RSC given here is related but slightly different:
instead of control in a neighborhood of the true parameter θ∗, we need control over the iter-

ates of an algorithm approaching the optimum θ̂. Nonetheless, it can be also be shown that
our form of RSC (and also RSM) holds with high probability for decomposable regularizers,
and this fact underlies the corollaries stated in Section 3.2.

With regards to the choice of tolerance parameter δ, as our results will clarify, it makes little
sense to be concerned with choices that are substantially smaller than the statistical precision
of the model. There are various ways in which statistical precision can be defined; one

natural one is ε2
stat

:= E[‖θ̂λn
− θ∗‖2], where the expectation is taken over the randomness

in the data-dependent loss function.1 The statistical precision of various M -estimators
under high-dimensional scaling are now relatively well understood, and in the sequel, we
will encounter various models for which the RSM/RSC conditions hold with tolerance equal
to the statistical precision.

3 Global geometric convergence and its consequences

In this section, we first state the main result of our paper, and discuss some of its conse-
quences. We illustrate its application to several statistical models in Section 3.2.

1As written, statistical precision also depends on the choice of λn, but our theory will involve
specific choices of λn that are order-optimal.
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3.1 Guarantee of geometric convergence

Recall that θ̂λn
denotes any optimal solution to the problem (1). Our main theorem guaran-

tees that if the RSC/RSM conditions hold with tolerance δ, then Algorithm (2) is guaranteed
to have a geometric rate of convergence up to this tolerance. The theorem statement involves
the objective function φ(θ) = L(θ) + λnR(θ).

Theorem 1 (Geometric convergence). Suppose that the loss function satisfies conditions
(RSC) and (RSM) with a tolerance δ and parameters (γ`, γu, κ`, κu). Then the sequence
{θt}∞t=0 generated by the updates (2) satisfies

‖θt − θ̂‖2 ≤ c0

(
1− γ`

4γu

)t

+ c1δ
2 for all t = 0, 1, 2, . . . (7)

where c0 := 2 (φ(0)−φ(θ̂))
γ`

, and c1 := 8γu

γ2

`

(
4γ`κ`

γu
+ κu

)
.

Remarks: Note that the bound (7) consists of two terms: the first term decays exponen-
tially fast with the contraction coefficient α := 1 − γ`

4γu
. The second term is an additive

offset, which becomes relevant only for t large enough such that ‖θt − θ̂‖2 = O(δ2). Thus,
the result guarantees a globally geometric rate of convergence up to the tolerance parameter
δ. Previous work has focused primarily on the case of sparse linear regression. For this spe-
cial case, certain methods are known to be globally convergent at sublinear rates (e.g., [2]),
meaning of the type O(1/t2). The geometric rate of convergence guaranteed by Theorem 1
is exponentially faster. Other work on sparse regression [3, 5] has provided geometric rates
of convergence that hold once the iterates are close to the optimum. In contrast, Theorem 1

guarantees geometric convergence if the iterates are not too close to the optimum θ̂.

In Section 3.2, we describe a number of concrete models for which the (RSC) and (RSM)
conditions hold with δ � εstat, which leads to the following result.

Corollary 1. Suppose that the loss function satisfies conditions (RSC) and (RSM) with
tolerance δ = O(εstat) and parameters (γ`, γu, κ`, κu). Then

T = O
( log(1/εstat)

log(4γu/(4γu − γ`))

)
(8)

steps of the updates (2) ensures that ‖θT − θ∗‖2 = O(ε2
stat

).

In the setting of statistical recovery, since the true parameter θ∗ is of primary interest, there
is little point to optimizing to a tolerance beyond the statistical precision. To the best of
our knowledge, this result—where fast convergence happens when the optimization error is
larger than statistical precision—is the first of its type, and makes for an interesting contrast
with other local convergence results.

3.2 Consequences for specific statistical models

We now consider the consequences of Theorem 1 for some specific statistical models. In
contrast to the previous deterministic results, these corollaries hold with high probability.

Sparse linear regression: First, we consider the case of sparse least-squares regression.
Given an unknown regression vector θ∗ ∈ Rd, suppose that we make n i.i.d. observations of
the form yi = 〈xi, θ

∗〉 + wi, where wi is zero-mean noise. For this model, each observation
is of the form Zi = (xi, yi) ∈ Rd × R. In a variety of applications, it is natural to assume
that θ∗ is sparse. For a parameter q ∈ [0, 1] and radius Rq > 0, let us define the `q “ball”

Bq(Rq) :=
{
θ ∈ R

d |
d∑

j=1

|βj |q ≤ Rq

}
. (9)

Note that q = 0 corresponds to the case of “hard sparsity”, for which any vector β ∈ B0(R0)
is supported on a set of cardinality at most R0. For q ∈ (0, 1], membership in Bq(Rq)
enforces a decay rate on the ordered coefficients, thereby modelling approximate sparsity.
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In order to estimate the unknown regression vector θ∗ ∈ Bq(Rq), we consider the usual
Lasso program, with the quadratic loss function L(θ;Zn

1 ) :=
1
2n

∑n
i=1(yi −〈xi, θ〉)2 and the

`1-norm regularizer R(θ) := ‖θ‖1. We consider the Lasso in application to a random design
model, in which each predictor vector xi ∼ N(0,Σ); we assume that maxj=1,...,dΣjj ≤ 1 for
standardization, and that the condition number κ(Σ) is finite.

Corollary 2 (Sparse vector recovery). Suppose that the observation noise wi is zero-mean
and sub-Gaussian with parameter σ, and θ∗ ∈ Bq(Rq), and we use the Lasso program with

λn = 2σ
√

log d
n . Then there are universal positive constants ci, i = 0, 1, 2, 3 such that with

probability at least 1− exp(−c3nλ
2
n), the iterates (2) with ρ2 = Θ

(
σ2Rq(

n
log d )

q/2
)
satisfy

‖θt − θ̂‖22 ≤ c0

(
1− c2

κ(Σ)

)t

+ c1 σ
2Rq

(
log d

n

)1−q/2

︸ ︷︷ ︸
ε2
stat

for all t = 0, 1, 2, . . .. (10)

It is worth noting that the form of statistical error εstat given in bound (10) is known to
be minimax optimal up to constant factors [13]. In related work, Garg and Khandekar [4]
showed that for the special case of design matrices that satisfy the restricted isometry prop-
erty (RIP), a thresholded gradient method has geometric convergence up to the tolerance
‖w‖2/

√
n ≈ σ. However, this tolerance is independent of sample size, and far larger the sta-

tistical error εstat if n > log d; moreover, severe conditions like RIP are not needed to ensure
fast convergence. In particular, Corollary 2 guarantees guarantees geometric convergence
up to εstat for many random matrices that violate RIP. The proof of Corollary 2 involves
exploiting some random matrix theory results [14] in order to verify that the RSC/RSM
conditions hold with high probability (see the full-length version for details).

Matrix regression with rank constraints: For a pair of matrices A,B ∈ Rm×m, we use
〈〈A, B〉〉 = trace(ATB) to denote the trace inner product. Suppose that we are given n i.i.d.
observations of the form yi = 〈〈Xi, Θ

∗〉〉+wi, where wi is zero-mean noise with variance σ2,
and Xi ∈ Rm×m is an observation matrix. The parameter space is Ω = Rm×m and each ob-
servation is of the form Zi = (Xi, yi) ∈ Rm×m×R. In many contexts, it is natural to assume
that Θ∗ is exactly or approximately low rank; applications include collaborative filtering and
matrix completion [7, 15], compressed sensing [16], and multitask learning [19, 10, 17]. In
order to model such behavior, we let σ(Θ∗) ∈ Rm denote the vector of singular values of
Θ∗ (padded with zeros as necessary), and impose the constraint σ(Θ∗) ∈ Bq(Rq). We then
consider the M -estimator based on the quadratic loss L(Θ;Zn

1 ) =
1
2n

∑n
i=1(yi − 〈〈Xi, Θ〉〉)2

combined with the nuclear norm R(Θ) = ‖σ(Θ)‖1 as the regularizer.

Various problems can be cast within this framework of matrix regression:

• Matrix completion: In this case, observation yi is a noisy version of a randomly selected
entry Θ∗

a(i),b(i) of the unknown matrix. It is a special case with Xi = Ea(i)b(i), the matrix

with one in position (a(i), b(i)) and zeros elsewhere.

• Compressed sensing: In this case, the observation matrices Xi are dense, drawn from
some random ensemble, with the simplest being Xi ∈ Rm×m with i.i.d. N(0, 1) entries.

• Multitask regression: In this case, the matrix Θ∗ is likely to be non-square, with the
column size m2 corresponding to the dimension of the response variable, and m1 to the
number of predictors. Imposing a low-rank constraint on Θ∗ is equivalent to requiring
that the regression vectors (or columns of the matrix) lie close to a lower-dimensional
subspace. See the papers [10, 17] for more details on reformulating this problem as an
instance of matrix regression.

For each of these problems, it is possible to show that suitable forms of the RSC/RSM
conditions will hold with high probability. For the case of matrix completion, the paper [9]
establishes a form of RSC useful for controlling statistical error; this argument can be suit-
ably modified to establish related notions of RSC/RSM required for ensuring fast algorithmic
convergence. Similar statements apply to the settings of compressed sensing and multi-task
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regression. For these matrix regression problems, consider the statistical precision

ε2
mat

�




Rq

(
m logm

n

)1−q/2

for matrix completion

Rq

(
m
n

)1−q/2

otherwise,

rates that (up to logarithmic factors) are known to be minimax-optimal [9, 17]. As dictated

by this statistical theory, the regularization parameter should be chosen as λn = cσ
√

m logm
n

for matrix completion, and λn = cσ
√

m
n otherwise, where c > 0 is a universal positive con-

stant. The following result applies to matrix regression problems for which the RSC/RSM
conditions hold with tolerance δ = εstat.

Corollary 3 (Low-rank matrix recovery). Suppose that σ(Θ∗) ∈ Bq(Rq), and the observa-
tion noise is zero-mean σ-sub-Gaussian. Then there are universal positive constants c1, c2, c3

such that with probability at least 1−exp(−c3nλ
2
n), the iterates (2) with ρ = Θ

(
εmat

λn

)
satisfy

|||Θt − Θ∗|||2F ≤ c0ν
t + c1ε

2
mat

for all t = 0, 1, 2, . . ..

Here the contraction coefficient ν ∈ (0, 1) is a universal constant, independent of (n,m,Rq),
depending on the parameters (γ`, γu). We refer the reader to the full-length version for
specific form taken for different variants of matrix regression.

4 Simulations

In this section, we provide some experimental results that confirm the accuracy of our theo-
retical predictions. In particular, these results verify the predicted linear rates of convergence
under the conditions of Corollaries 2 and 3.

Sparse regression: We consider a random ensemble of problems, in which each de-
sign vector xi ∈ Rd is generated i.i.d. according to the recursion x(1) = z1 and
x(j) = zj + υxi(j − 1) for j = 2, . . . , d, where the zj are N (0, 1), and υ ∈ [0, 1) is a correla-
tion parameter. The singular values of the resulting covariance matrix Σ satisfy the bounds
σmin(Σ) ≥ 1/(1+υ)2 and σmax(Σ) ≤ 2

(1−υ)2(1+υ) . Note that Σ has a finite condition number

for all υ ∈ [0, 1); for υ = 0, it is the identity, but it becomes ill-conditioned as υ → 1. We
recall that in this setting yi = 〈xi, θ

∗〉+wi where wi ∼ N (0, 1) and θ∗ ∈ Bq(Rq). We study
the convergence properties for sample sizes n = αs log d using different values of α. We note
that the per iteration cost of our algorithm is n × d. All our results are averaged over 10
random trials.

Our first experiment is based on taking the correlation parameter υ = 0, and the `q-ball
parameter q = 0, corresponding to exact sparsity. We then measure convergence rates for
α ∈ {1, 1.25, 5, 25} with d = 40000 and s = (log d)2. As shown in Figure 1(a), the procedure
fails to converge for α = 1: with this setting, the sample size n is too small for conditions
(RSC) and (RSM) to hold, so that a constant step size leads to oscillations without these
conditions. For α sufficiently large to ensure RSC/RSM, we observe a geometric convergence

of the error ‖θt − θ̂‖2, and the convergence rate is faster for α = 25 compared to α = 5,
since the RSC/RSM constants are better with larger sample size.

On the other hand, we expect the convergence rates to be slower when the condition number
of Σ is worse; in addition to address this issue, we ran the same set of experiments with the
correlation parameter υ = 0.5. As shown in Figure 1(b), in sharp contrast to the case υ = 0,
we no longer observe geometric convergence for α = 1.25, since the conditioning of Σ with
υ = 0.5 is much poorer than with the identity matrix. Finally, we also expect optimization
to be harder as the sparsity parameter q ∈ [0, 1] is increase away from zero. For larger q,
larger sample sizes are required to verify the RSC/RSM conditions. Figure 1(c) shows that
even with υ = 0, setting α = 5 is required for geometric convergence.

Low-rank matrices: We also performed experiments with two different versions of low-
rank matrix regression, each time with m2 = 1602. The first setting is a version of com-
pressed sensing with matrices Xi ∈ R160×160 with i.i.d. N(0, 1) entries, and we set q = 0,
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Figure 1. Plot of the log of the optimization error log(‖θt − θ̂‖2) in the sparse linear
regression problem. In this problem, d = 40000, s = (log d)2, n = αs log d. Plot (a) shows
convergence for the exact sparse case with q = 0 and Σ = I (i.e. υ = 0). In panel (b), we
observe how convergence rates change for a non-identity covariance with υ = 0.5. Finally
plot (c) shows the convergence rates when υ = 0, q = 1.

and formed a matrix Θ∗ with rank R0 = dlogme. We then performed a series of trials with
sample size n = αR0 m, with the parameter α ∈ {1, 5, 25}. The per iteration cost in this
case is n × m2. As seen in Figure 2(a), the general behavior of convergence rates in this
problem stays the same as for the sparse linear regression problem: it fails to converge when
α is too small, and converges geometrically (with a progressively faster rate) as α increases.
Figure 2(b) shows matrix completion also enjoys geometric convergence, for both exactly
low-rank (q = 0) and approximately low-rank matrices.

0 50 100 150 200
−8

−6

−4

−2

0

2

Iterations

lo
g(
‖
Θ

t
−

Θ̂
‖

F
)

log error vs. iterations

 

 

α = 1
α = 5
α =25

0 10 20 30 40 50 60
−5

−4

−3

−2

−1

0

1

Iterations

lo
g(
‖
Θ

t
−

Θ̂
‖

F
)

log error vs. iterations

 

 

q = 0

q =0.5

q = 1

(a) (b)

Figure 2. (a) Plot of log Frobenius error log(|||Θt − Θ̂|||F ) versus number of iterations
in matrix compressed sensing for a matrix size m = 160 with rank R0 = dlog(160)e, and
sample sizes n = αR0m. For α = 1, the algorithm oscillates whereas geometric convergence
is obtained for α ∈ {5, 25}, consistent with the theoretical prediction. (b) Plot of log

Frobenius error log(|||Θt − Θ̂|||F ) versus number of iterations in matrix completion with
approximately low rank matrices (q ∈ {0, 0.5, 1}), showing geometric convergence.

5 Discussion

We have shown that even though high-dimensional M -estimators in statistics are neither
strongly convex nor smooth, simple first-order methods can still enjoy global guarantees of
geometric convergence. The key insight is that strong convexity and smoothness need only
hold in restricted senses, and moreover, these conditions are satisfied with high probabil-
ity for many statistical models and decomposable regularizers used in practice. Examples
include sparse linear regression and `1-regularization, various statistical models with group-
sparse regularization, and matrix regression with nuclear norm constraints. Overall, our
results highlight that the properties of M -estimators favorable for fast rates in a statistical
sense can also be used to establish fast rates for optimization algorithms.
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