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Abstract

In this paper, we regard clustering as ensembles of k-ary affinity relations and
clusters correspond to subsets of objects with maximal average affinity relations.
The average affinity relation of a cluster is relaxed and well approximated by a
constrained homogenous function. We present an efficient procedure to solve this
optimization problem, and show that the underlying clusters can be robustly re-
vealed by using priors systematically constructed from the data. Our method can
automatically select some points to form clusters, leaving other points un-grouped;
thus it is inherently robust to large numbers of outliers, which has seriously limited
the applicability of classical methods. Our method also provides a unified solu-
tion to clustering from k-ary affinity relations with & > 2, that is, it applies to both
graph-based and hypergraph-based clustering problems. Both theoretical analysis
and experimental results show the superiority of our method over classical solu-
tions to the clustering problem, especially when there exists a large number of
outliers.

1 Introduction

Data clustering is a fundamental problem in many fields, such as machine learning, data mining and
computer vision [1]. Unfortunately, there is no universally accepted definition of a cluster, probably
because of the diverse forms of clusters in real applications. But it is generally agreed that the objects
belonging to a cluster satisfy certain internal coherence condition, while the objects not belonging
to a cluster usually do not satisfy this condition.

Most of existing clustering methods are partition-based, such as k-means [2], spectral clustering
[3, 4, 5] and affinity propagation [6]. These methods implicitly share an assumption: every data
point must belong to a cluster. This assumption greatly simplifies the problem, since we do not
need to judge whether a data point is an outlier or not, which is very challenging. However, this
assumption also results in bad performance of these methods when there exists a large number of
outliers, as frequently met in many real-world applications.

The criteria to judge whether several objects belong to the same cluster or not are typically expressed
by pairwise relations, which is encoded as the weights of an affinity graph. However, in many
applications, high order relations are more appropriate, and may even be the only choice, which
naturally results in hyperedges in hypergraphs. For example, when clustering a given set of points
into lines, pairwise relations are not meaningful, since every pair of data points trivially defines
a line. However, for every three data points, whether they are near collinear or not conveys very
important information.

As graph-based clustering problem has been well studied, many researchers tried to deal with
hypergraph-based clustering by using existing graph-based clustering methods. One direction is
to transform a hypergraph into a graph, whose edge-weights are mapped from the weights of the
original hypergraph. Zien et. al. [7] proposed two approaches called “clique expansion” and “star
expansion”, respectively, for such a purpose. Rodriguez [8] showed the relationship between the



spectral properties of the Laplacian matrix of the resulting graph and the minimum cut of the orig-
inal hypergraph. Agarwal et al. [9] proposed the “clique averaging” method and reported better
results than “clique expansion” method. Another direction is to generalize graph-based clustering
method to hypergraphs. Zhou et al. [10] generalized the well-known “normalized cut” method [5]
and defined a hypergraph normalized cut criterion for a k-partition of the vertices. Shashua et al.
[11] cast the clustering problem with high order relations into a nonnegative factorization problem
of the closest hyper-stochastic version of the input affinity tensor.

Based on game theory, Bulo and Pelillo [12] proposed to consider the hypergraph-based clustering
problem as a multi-player non-cooperative “clustering game” and solve it by replicator equation,
which is in fact a generalization of their previous work [13]. This new formulation has a solid
theoretical foundation, possesses several appealing properties, and achieved state-of-art results. This
method is in fact a specific case of our proposed method, and we will discuss this point in Section 2.

In this paper, we propose a unified method for clustering from k-ary affinity relations, which is
applicable to both graph-based and hypergraph-based clustering problems. Our method is motivated
by an intuitive observation: for a cluster with m objects, there may exist (}*) possible k-ary affinity
relations, and most of these (sometimes even all) k-ary affinity relations should agree with each
other on the same criterion. For example, in the line clustering problem, for m points on the same
line, there are (%) possible triplets, and all these triplets should satisfy the criterion that they lie on
a line. The ensemble of such large number of affinity relations is hardly produced by outliers and is
also very robust to noises, thus yielding a robust mechanism for clustering.

2 Formulation

Clustering from k-ary affinity relations can be intuitively described as clustering on a special kind
of edge-weighted hypergraph, k-graph. Formally, a k-graph is a triplet G = (V, E,w), where
V = {1,---,n} is a finite set of vertices, with each vertex representing an object, £ C V* is the
set of hyperedges, with each hyperedge representing a k-ary affinity relation, and w : £ — Ris a
weighting function which associates a real value (can be negative) with each hyperedge, with larger
weights representing stronger affinity relations. We only consider the k-ary affinity relations with no
duplicate objects, that is, the hyperedges among k different vertices. For hyperedges with duplicated
vertices, we simply set their weights to zeros.

Each hyperedge e € E involves k vertices, thus can be represented as k-tuple {vq,---,vg}. The
k
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weighted adjacency array of graph G is an n X n X - - - X n super-symmetry array, denoted by M,
and defined as

M(vi,- -, vp) = { w({vh'o'ka}) if {vh--e'ls,;k} €E, "

Note that each edge {v1,---,vr} € E has k! duplicate entries in the array M.

For a subset U C V with m vertices, its edge set is denoted as Fy. If U is really a cluster, then
most of hyperedges in Ey; should have large weights. The simplest measure to reflect such ensemble
phenomenon is the sum of all entries in M whose corresponding hyperedges contain only vertices
in U, which can be expressed as:

SU)= > Mvi,--,w). @)

vi,e v €U

Suppose y is an n X 1 indicator vector of the subset U, such that y,, = 1 if v; € U and zero

otherwise, then S(U) can be expressed as:
k
——N—
Z M(Ula"'7vk)yv1"'yvk- (3)
vy, 0k €V

Obviously, S(U) usually increases as the number of vertices in U increases. Since ), y; = m and
there are m” summands in S(U), the average of these entries can be expressed as:

Sunll) = =25(9)
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where z = y/m. As ), y; =m, y_, x; = 1is a natural constraint over z.

Intuitively, when U is a true cluster, S,,,(U) should be relatively large. Thus, the clustering problem
corresponds to the problem of maximizing S, (U). In essence, this is a combinatorial optimization
problem, since we know neither m nor which m objects to select. As this problem is NP-hard, to
reduce its complexity, we relax x to be within a continuous range [0, €], where ¢ < 1 is a constant,
while keeping the constraint ) . 2; = 1. Then the problem becomes:

k
max f(z) = Zvl,“-,vaV M(vr, -+ o) [Timy @, (5)
subject to x € A™ and x; € [0, €]

where A" = {x € R" : > 0and ), z; = 1} is the standard simplex in R". Note that S, (z) is
abbreviated by f(x) to simplify the formula.

The adoption of ¢;-norm in (5) not only let z; have an intuitive probabilistic meaning, that is, x;
represents the probability for the cluster contain the i-th object, but also makes the solution sparse,
which means to automatically select some objects to form a cluster, while ignoring other objects.

Relation to Clustering Game. In [12], Bulo and Pelillo proposed to cast the hypergraph-based
clustering problem into a clustering game, which leads to a similar formulation as (5). In fact, their
formulation is a special case of (5) when € = 1. Setting € < 1 means that the probability of choosing
each strategy (from game theory perspective) or choosing each object (from our perspective) has an
known upper bound, which is in fact a prior, while € = 1 represents a noninformative prior. This
point is very essential in many applications, it avoids the phenomenon where some components of
x dominate. For example, if the weight of a hyperedge is extremely large, then the cluster may only
select the vertices associated with this hyperedge, which is usually not desirable. In fact, € offers us
a tool to control the least number of objects in cluster. Since each component does not exceed ¢, the
cluster contains at least [%] objects, where [z] represents the smallest integer larger than or equal to
z. Because of the constraint z; € [0, €], the solution is also totally different from [12].

3 Algorithm

Formulation (5) usually has many local maxima. Large maxima correspond to true clusters and
small maxima usually form meaningless subsets. In this section, we first analyze the properties
of the maximizer «*, which are critical in algorithm design, and then introduce our algorithm to
calculate z*.

Since the formulation (5) is a constrained optimization problem, by adding Lagrangian multipliers
A 1y pbpand By, -+, By, s > 0and 5; > 0 foralléi = 1,-- -, n, we can obtain its Lagrangian
function:

L(z, A p, B) = f(z) — )\(Z z; — 1)+ Zuixi + Z@‘(E — ;). (6)
i=1 i=1 i=1
The reward at vertex i, denoted by r; (), is defined as follows:

k—1

7’}([1}) = Z M(Ulv"'7vk717i) H‘r’Ut (7)
V1,0,V —1EV t=1

Since M is a super-symmetry array, then % = kr;(x), i.e., r;(x) is proportional to the gradient

of f(x) at x.



Any local maximizer =* must satisfy the Karush-Kuhn-Tucker (KKT) condition [14], i.e., the first-
order necessary conditions for local optimality. That is,

krz(x*)7A+,u175’L:077’:157na
2=t ik = 0, 8)
dimi(e—xi)Bi = 0.

Since x}, p; and 3; are all nonnegative for all &’s, >, z}p; = 0 is equivalent to saying that if
x} >0, then y; = 0,and ) ;- (¢ — z})B3; = 0 is equivalent to saying that if 2} < &, then 3; = 0.
Hence, the KKT conditions can be rewritten as:

< Nk, xf =0,
ri(x*)q =Nk, xf>0andz} <e, 9)
> Mk, xf =e.

According to z, the vertices set V' can be divided into three disjoint subsets, V4 (z) = {i|z; = 0},
Va(z) = {i|z; € (0,¢)} and V3(x) = {i|z; = €}. The Equation (9) characterizes the properties of
the solution of (5), which are further summarized in the following theorem.

Theorem 1. If x* is the solution of (5), then there exists a constant 7 (= A/k) such that 1) the
rewards at all vertices belonging to V;(z*) are not larger than 7); 2) the rewards at all vertices
belonging to V2(x*) are equal to 7; and 3) the rewards at all vertices belonging to V3(z*) are not
smaller than 7.

Proof: Since KKT condition is a necessary condition, according to (9), the solution * must satisfy
1), 2) and 3).

The set of non-zero components is Vy(z) = Va(z) U V3(z) and the set of the components which are
smaller than e is V,,(z) = V;(2)UVa(z). For any z, if we want to update it to increase f(z), then the
values of some components belonging to V;(x) must decrease and the values of some components
belonging to V,,(z) must increase. According to Theorem 1, if x is the solution of (5), then r;(x) <
ri(x),Vi € Vu(x),Vj € Vg(x). On the contrary, if 3i € V,,(z),3j € Va(z),ri(z) > rj(x), then x
is not the solution of (5). In fact, in such case, we can increase z; and decrease x; to increase f(z).

That is, let
r,  L#FGI#G;
=< 2+ a, =1 (10)
T — Q, l=17.
and define
k—2
rig(z) = Y M, ve2,8,5) [ 2o, (11)
V1, Vg —2 t=1
Then

f@) = f(z) = —k(k — Drij(z)a® + k(ri(z) — rj(2))o (12)

Since r;(z) > r;(x), we can always select a proper & > 0 to increase f(z). According to formula
(10) and the constraint over z;, < min(z;,e — ;). Since r;(z) > r;(x), if r;;(z) < 0, then
when o = min(z;,e — ;), the increase of f(x) reaches maximum; if r;; > 0, then when o =
min(z;,e — x;, %), the increase of f () reaches maximum.
ij

According to the above analysis, if 3i € V,,(z),35 € Vy(x),ri(z) > r;(x), then we can update
x to increase f(z). Such procedure iterates until r;(z) < r;(z),Vi € V,(x),Vj € Vy(z). From
a prior (initialization) (0), the algorithm to compute the local maximizer of (5) is summarized in
Algorithm 1, which successively chooses the “best” vertex and the “worst” vertex and then update
their corresponding components of x.

Since significant maxima of formulation (5) usually correspond to true clusters, we need multiple
initializations (priors) to obtain them, with at least one initialization at the basin of attraction of
every significant maximum. Such informative priors in fact can be easily and efficiently constructed
from the neighborhood of every vertex (vertices with hyperedges connecting to this vertex), because
the neighbors of a vertex generally have much higher probabilities to belong to the same cluster.



Algorithm 1 Compute a local maximizer «* from a prior z(0)

1: Input: Weighted adjacency array M, prior z(0);

2: repeat

3:  Compute the reward r;(x) for each vertex i;

4:  Compute Vi (x(t)), Va(z(t)), Va(z(t)), Va(z(t)), and V,,(x(t));

5:  Find the vertex ¢ in V,,(z(t)) with the largest reward and the vertex j in Vy(x(t)) with the
smallest reward;

6:  Compute « and update z(t) by formula (10) to obtain (¢ + 1);

7: until z is a local maximizer

8: Output: The local maximizer x*.

Algorithm 2 Construct a prior z(0) containing vertex v

1: Input: Hyperedge set E(v) and €;
Sort the hyperedges in E(v) in descending order according to their weights;
fori=1,--- |E(v)| do

Add all vertices associated with the i-th hyperedge to L. If |L| > [1], then break;
end for
For each vertex v; € L, set the corresponding component z,,, (0) = 7k

AR A

Output: a prior z(0).

For a vertex v, the set of hyperedges connected to v is denoted by E(v). We can construct a prior
containing v from E(v), which is described in Algorithm 2.

Because of the constraint ; < ¢, the initializations need to contain at least [%] nonzero compo-
nents. To cover basin of attractions of more maxima, we expect these initializations to locate more
uniformly in the space {x|z € A", x; < e}.

Since from every vertex, we can construct such a prior, thus, we can construct n priors in total. From
these n priors, according to Algorithm 1, we can obtain n maxima. The significant maxima of (5)
are usually among these n maxima, and a significant maximum may appear multiple times. In this
way, we can robustly obtain multiple clusters simultaneously, and these clusters may overlap, both
of which are desirable properties in many applications. Note that the clustering game approach [12]
utilizes a noninformative prior, that is, all vertices have equal probability. Thus, it cannot obtain
multiple clusters simultaneously. In clustering game approach [12], if x;(¢) = 0, then x;(¢t+1) = 0,
which means that it can only drop points and if a point is initially not included, then it cannot be
selected. However, our method can automatically add or drop points, which is another key difference
to the clustering game approach.

In each iteration of Algorithm 1, we only need to consider two components of x, which makes
both the update of rewards and the update of x(t) very efficient. As f(x(¢)) increases, the sizes of
Vi (z(t)) and Vy(z(t)) both decrease quickly, thus f(x) converges to local maximum quickly. Sup-
pose the maximal number of hyperedges containing a certain vertex is h, then the time complexity
of Algorithm 1 is O(thk), where ¢ is the number of iterations. The total time complexity of our
method is then O(nthk), since we need to ran Algorithm 1 from n initializations.

4 Experiments

We evaluate our method on three types of experiments. The first one addresses the problem of line
clustering, the second addresses the problem of illumination-invariant face clustering, and the third
addresses the problem of affine-invariant point set matching. We compare our method with clique
averaging [9] algorithm and matching game approach [12]. In all experiments, the clique averaging
approach needs to know the number of clusters in advance; however, both clustering game approach
and our method can automatically reveal the number of clusters, which yields the advantages of the
latter two in many applications.

4.1 Line Clustering

In this experiment, we consider the problem of clustering lines in 2D point sets. Pairwise similarity
measures are useless in this case, and at least three points are needed for characterizing such a



property. The dissimilarity measure on triplets of points is given by their mean distance to the best
fitting line. If d(i, 4, k) is the dissimilarity measure of points {i, j, k}, then the similarity function is
given by s({, j, k}) = exp(—d(i, j, k)*/c3), where o is a scaling parameter, which controls the
sensitivity of the similarity measure to deformation.

We randomly generate three lines within the region [—0.5, 0.5]%, each line contains 30 points, and all
these points have been perturbed by Gaussian noise N (0, o). We also randomly add outliers into the
point set. Fig. 1(a) illustrates such a point set with three lines shown in red, blue and green colors,
respectively, and the outliers are shown in magenta color. To evaluate the performance, we ran all
algorithms on the same data set over 30 trials with varying parameter values, and the performance
is measured by F-measure.

We first fix the number of outliers to be 60, vary the scaling parameter o4 from 0.01 to 0.14, and
the result is shown in Fig. 1(b). For our method, we set ¢ = 1/30. Obviously, our method is nearly
not affected by the scaling parameter o4, while the clustering game approach is very sensitive to 0.
Note that o4 in fact controls the weights of the hyperedge graph and many graph-based algorithms
are notoriously sensitive to the weights of the graph. Instead, by setting a proper ¢, our method
overcomes this problem. From Fig. 1(b), we observe that when o4, = 40, the clustering game
approach will get the best performance. Thus, we fix o4 = 40, and change the noise parameter
o from 0.01 to 0.1, the results of clustering game approach, clique averaging algorithm and our
method are shown in blue, green and red colors in Fig. 1(c), respectively. As the figure shows, when
the noise is small, matching game approach outperforms clique averaging algorithm, and when the
noise becomes large, the clique averaging algorithm outperforms matching game approach. This is
because matching game approach is more robust to outliers, while the clique averaging algorithm
seems more robust to noises. Our method always gets the best result, since it can not only select
coherent clusters as matching game approach, but also control the size of clusters, thus avoiding the
problem of too few points selected into clusters.

In Fig. 1(d) and Fig. 1(e), we vary the number of outliers from 10 to 100, the results clearly demon-
strate that our method and clustering game approach are robust to outliers, while clique averaging
algorithm is very sensitive to outliers, since it is a partition-based method and every point must be
assigned to a cluster. To illustrate the influence of €, we fix 04 = o = 0.02, and test the perfor-
mance of our method under different ¢, the result is shown in Fig. 1(f), note that  axis is 1 /. As we
stressed in Section 2, clustering game approach is in fact a special case of our method when ¢ = 1,
thus, the result at ¢ = 1 is nearly the same as the result of clustering game approach in Fig. 1(b)
under the same conditions. Obviously, as 1/& approaches the real number of points in the cluster,
the result become much better. Note that the best result appears when 1/¢ > 30, which is due to the
fact that some outliers fall into the line clusters, as can be seen in Fig. 1(a).

4.2 TINlumination-invariant face clustering

It has been shown that the variability of images of a Labmertian surface in fixed pose, but under
variable lighting conditions where no surface point is shadowed, constitutes a three dimensional
linear subspace [15]. This leads to a natural measure of dissimilarity over four images, which can
be used for clustering. In fact, this is a generalization of the k-lines problem into the k-subspaces
problem. If we assume that the four images under consideration form the columns of a matrix, and

2
normalize each column by ¢5 norm, then d = ﬁ serves as a natural measure of dissimilarity,
1 4

where s; is the i*" singular value of this matrix.

In our experiments we use the Yale Face Database B and its extended version [16], which contains 38
individuals, each under 64 different illumination conditions. Since in some lighting conditions, the
images are severely shadowed, we delete these images and do the experiments on a subset (about
35 images for each individual). We considered cases where we have faces from 4 and 5 random
individuals (randomly choose 10 faces for each individual), with and without outliers. The case with
outliers consists 10 additional faces each from a different individual. For each of those combinations,
we ran 10 trials to obtain the average F-measures (mean and standard deviation), and the result is
reported in Table 1. Note that for each algorithm, we individually tune the parameters to obtain
the best results. The results clearly show that partition-based clustering method (clique averaging)
is very sensitive to outliers, but performs better when there are no outliers. The clustering game
approach and our method both perform well, especially when there are outliers, and our method
performs a little better.
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Figure 1: Results on clustering three lines with noises and outliers. The performance of clique
averaging algorithm [9], matching game approach [12] and our method is shown as green dashed,
blue dotted and read solid curves, respectively. This figure is best viewed in color.

Table 1: Experiments on illuminant-invariant face clustering

Classes 4 5
Outliers 0 [ 10 0 [ 10
Clique Averaging || 0.95+0.05 | 0.84 £0.08 || 0.93 £0.05 | 0.83 £0.07
Clustering Game || 0.924+0.04 | 0.90 & 0.04 0.91+0.06 | 0.90+£0.07
Our Method 0.93+0.04 | 0.92+0.05 || 0.92+0.07 | 0.91+0.04

4.3 Affine-invariant Point Set Matching

An important problem in the object recognition is the fact that an object can be seen from different
viewpoints, resulting in differently deformed images. Consequently, the invariance to viewpoints
is a desirable property for many vision tasks. It is well-known that a near-planar object seen from
different viewpoint can be modeled by affine transformations. In this subsection, we will show that
matching planar point sets under different viewpoints can be formulated into a hypergraph clustering
problem and our algorithm is very suitable for such tasks.

Suppose the two point sets are P and ), with np and ng points, respectively. For each point
in P, it may match to any point in (), thus there are npng candidate matches. Under the affine

X S, .
transformation A, for three correct matches, my;/, m;;: and mpr, o2~ = [det(A)|, where S;;y, is
i’ §'k

the area of the triangle formed by points 4, j and k in P, Sy ;- is the area of the triangle formed

by points i/, j* and k" in ), and det(A) is the determinant of A. If we regard each candidate match

(- (Sigk—=Sy ;v |det(A)])? )
7

points (candidate matches), m;;, m ;- and myy, 04 is a scaling parameter, and the correct matching

configuration then naturally form a cluster. Note that in this problem, most of the candidate matches

are incorrect matches, and can be considered to be outliers.

as a point, then s = exp serves as a natural similarity measure for three

We did the experiments on 8 shapes from MPEG-7 shape database [17]. For each shape, we uni-
formly sample its contour into 20 points. Both the shapes and sampled point sets are demonstrated
in Fig. 2. We regard original contour point sets as Ps, then randomly add Gaussian noise N (0, o),
and transform them by randomly generated affine matrices As to form corresponding @)s. Fig. 3
(a) shows such a pair of P and @ in red and blue, respectively. Since most of points (candidate
matches) should not belong to any cluster, partition-based clustering method, such as clique aver-



aging method, cannot be used. Thus, we only compare our method with matching game approach
and measure the performance of these two methods by counting how many matches agree with the
ground truths. Since |det(A)| is unknown, we estimate its range and sample several possible values
in this range, and conduct the experiment for each possible |det(A)|. In Fig. 3(b), we fix noise
parameter ¢ = 0.05, and test the robustness of both methods under varying scaling parameter 0.
Obviously, our method is very robust to o4, while the matching game approach is very sensitive to
it. In Fig. 3(c), we increase o from 0.04 to 0.16, and for each o, we adjust o4 to reach the best
performances for both methods. As expected, our method is more robust to noise by benefiting from
the parameter ¢, which is set to 0.05 in both Fig. 3(b) and Fig. 3(c). In Fig. 3(d), we fix 0 = 0.05
and o4 = 0.15, and test the performance of our method under different €. The result again verifies
the importance of the parameter €.

Figure 2: The shapes and corresponding contour point sets used in our experiment.
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Figure 3: Performance curves on affine-invariant point set matching problem. The red solid curves
demonstrate the performance of our method, while the blue dotted curve illustrates the performance
of matching game approach.

5 Discussion

In this paper, we characterized clustering as an ensemble of all associated affinity relations and relax
the clustering problem into optimizing a constrained homogenous function. We showed that the
clustering game approach turns out to be a special case of our method. We also proposed an efficient
algorithm to automatically reveal the clusters in a data set, even under severe noises and a large num-
ber of outliers. The experimental results demonstrated the superiority of our approach with respect
to the state-of-the-art counterparts. Especially, our method is not sensitive to the scaling parameter
which affects the weights of the graph, and this is a very desirable property in many applications. A
key issue with hypergraph-based clustering is the high computational cost of the construction of a
hypergraph, and we are currently studying how to efficiently construct an approximate hypergraph
and then perform clustering on the incomplete hypergraph.
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