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Abstract

We consider the problem of Ising and Gaussian graphical fremdection given i.i.d. samples
from the model. We propose an efficient threshold-basediéthgo for structure estimation based
on conditional mutual information thresholding. This slmjocal algorithm requires only low-
order statistics of the data and decides whether two nodeseighbors in the unknown graph.
We identify graph families for which the proposed algorithas low sample and computational
complexities. Under some transparent assumptions, wélisstahat the proposed algorithm is
structurally consistent (or sparsistent) when the numbesamples scales as = Q(J;ﬁ1 log p),
wherep is the number of nodes ang,,;, is the minimum edge potential. We also develop novel
non-asymptotic techniques for obtaining necessary comgifor graphical model selection.

Keywords: Graphical model selection, high-dimensional learningaleseparation property, necessary conditions,
typical sets, Fano’s inequality.

1 Introduction

The formalism of probabilistic graphical models can be e@yet to represent dependencies among a large set of
random variables in the form of a graph [1]. An important tdvade in the study of graphical models is to learn
the unknown graph using samples drawn from the graphicaleio@he general structure estimation problem is
NP-hard [2]. In thehigh-dimensionalegime, structure estimation is even more difficult sin@ertbmber of available
observations is typically much smaller than the numberwietisions (or variables). One of the goals is to characterize
tractable model classes for which consistent graphicalelgelection can be guaranteed with low computational and
sample complexities.

The seminal work by Chow and Liu [3] proposed an efficient At for maximume-likelihood structure estimation

in tree-structured graphical models by reducing the prokie a maximum weight spanning tree problem. A more
recent approach for efficient structure estimation is basedonvex-relaxation [4-6]. The success of such methods
typically requires certain “incoherence” conditions tolcho However, these conditions are NP-hard to verify for
general graphical models.

We adopt an alternative paradigm in this paper and insteatyzma simple local algorithm which requires only
low-order statistics of the data and makes decisions onhenéivo nodes are neighbors in the unknown graph. We
characterize the class of Ising and Gaussian graphical iméatewhich we can guarantee efficient and consistent
structure estimation using this simple algorithm. The lasgraphs is based onlacal-separationproperty and
includes many well-known random graph families, includiogally-treelike graphs such as large girth graphs, the
Erd6és-Rényi random graphs [7] and power-law graphs Byvell as graphs with short cycles such as bounded-degree
graphs, and small-world graphs [9]. These graphs are esdyewlevant in modeling social networks [10, 11].



1.1 Summary of Results

We propose an algorithm for structure estimation, termedaaslitional mutual information thresholdingIT),
which computes the minimum empirical conditional mutudbrmation of a given node pair over conditioning sets
of bounded cardinality). If the minimum exceeds a given threshold (depending on timeler of samplea and the
number of nodep), the node pair is declared as an edge. This test has a lowutatigmal complexity ofD(p”+2)

and requires only low-order statistics (up to orger 2) wheny is small. The parameteris an upper bound on the
size of local vertex-separators in the graph, and is smalinfany common graph families, as discussed earlier. We
establish that under a set of mild and transparent assungpstructure learning is consistent in high-dimensions fo
CMIT when the number of samples scaleshas Q(Jr;fn logp), for ap-node graph, wherd,,;, is the minimum
(absolute) edge-potential in the model.

We also develop novel techniques to obtain necessary ¢omslifor consistent structure estimation of Erdés-Rényi
random graphs. We obtain non-asymptotic bounds on the nuaflsamples: in terms of the expected degree and
the number of nodes of the model. The techniques employeddfarenation-theoretic in nature and combine the use
of Fano’s inequality and the so-called asymptotic equiiantproperty.

Our results have many ramifications: we explicitly charazéethe tradeoff between various graph parameters such
as the maximum degree, girth and the strength of edge palefr efficient and consistent structure estimation. We
draw connections between structure learning and thetitatiphysical properties of the model: learning is fundame
tally related to the absence of long-range dependenciégimbdel, i.e., the regime obrrelation decay The notion

of correlation decay on Ising models has been extensivelyeciterized [12], but its connections to structure leaynin
have only been explored in a few recent works (e.g., [13])s Work establishes that consistent structure learning is
feasible under a slightly weaker condition than the usutibnf correlation decay for a rich class of graphs. More-
over, we show that the Gaussian analog of correlation dectiyeiso-calleavalk-summabilitycondition [14]. This is

a somewhat unexpected and surprising connection sincesuatknability is a condition to characterize the perfor-
mance of inference algorithms such as loopy belief propaigdt.BP). Our work demonstrates that both successful
inference and learning hinge on similar properties of thessan graphical model.

2 Preliminaries

2.1 Graphical Models

A p-dimensionabraphical models a family of p-dimensional multivariate distributions Markov on somelinacted
graphG=(V, E) [1]. Each node in the graphe V is associated to a random variable taking values in a set’. We
consider both discrete (in particular Ising) models wh&rs a finite set and Gaussian models wh&re- R. The set

of edgesty captures the set of conditional-independence relatipgsdtnong the random variables. More specifically,
the vector of random variablé6 := (X, ..., X},) with joint distribution P satisfies thglobal Markovproperty with
respect to a grap@, if for all disjoint setsA, B C V, we have

P(xa,xp|xs) = P(xalxs)P(xp|xs). Q)

where setS is a separatotbetweenA and B. The Hammersley-Clifford theorem states that undergbsitivity
condition, given byP(x) > 0 for all x € X? [1], the modelP satisfies the global Markov property according to a
graphG if and only if it factorizes according to the cliques@f

We consider the class of Ising models, i.e., binary pairwiselels which factorize according to the edges of the graph.
More precisely, the probability mass function (pmf) of am¢gsmodel is

P(x) x exp [%XTJG}(-F th} , xe{-1,1}". 2
For Gaussian graphical models, the probability densitgtion (pdf) is of the form,

f(x) x exp [—%XTJGx + th} , x€RP 3)

A setS C V is a separator of set$ and B if the removal of nodes i1$' separates! and B into distinct components.



In both the cases, the matid; is called the potential or information matrix ahgthe potential vector. For both Ising
and Gaussian models, the sparsity pattern of the mégrigorresponds to that of the grapghi.e.,Jz (4, j) = 0 if and

onlyif (7,j) ¢ G.
We assume that the potentials are uniformly bounded abavéelow as:

Jmin < |JG(iaj)| < Jmax; V(ivj) €eG. (4)

Our results on structure learning depend.Br, and J,..., which is fairly natural — intuitively, models with edge
potentials which are “too small” or “too large” are hardetdarn than those with comparable potentials, i.e., homoge-
nous models.

Notice that the conventional parameterizations for thegilsnodels in (2) and the Gaussian models in (3) are slightly
different. Without loss of generality, for Ising model, wesame that/(i,:) = 0 for all i € V. On the other hand, in
the Gaussian setting, we assume that the diagonal elenfehts ioverse covariance (or information) matdy are
normalized to unity(J(¢,7) = 1, i € V), and thatl can be decomposed g = I — R, whereR¢; is the matrix

of partial correlation coefficients [14].

We consider the problem structure learningwhich involves the estimation of the edge set of the gi@pgivenn
i.i.d. samplesXy,..., X, drawn either from the Ising model in (2) or the Gaussian mau¢B). We consider the
high-dimensional regime, where baitandn grow simultaneously; typically, the growth pfis much faster than that
of n.

2.2 Tractable Graph Families

We consider the class of graphical models Markov on a gf@pbelonging to some ensemifgp) of graphs with

p nodes. We emphasize that in our formulation the graph engefibp) can either be deterministic or random
— in the latter, we also specify a probability measure overgat of graphs irf§(p). In the random setting, we
use the termalmost every(a.e.) graphG ~ G(p) satisfies a certain proper@ (for example, connectedness) if
lim,_, o P[G, satisfiesQ] = 1. In other words, the propert@ holds asymptotically almost surélya.a.s.) with
respect to the random graph ensem@{g). Intuitively, this means that graphs that have a vanishimdpability of
occurrence ag — oo are ignored. Our conditions and theoretical guaranteédwibased on this notion for random
graph ensembles.

We now characterize the ensemble of graphs amenable foistemisstructure estimation. Fere N, let B, (i; G)
denote the set of vertices within distangdrom node: with respect to grapliz. Let H,; = G(B,(i;G)) de-
note the subgraph af spanned byB, (i; G), but in addition, we retain the nodes noti,(i; G) (and remove the
corresponding edges).

Definition 1 (y-Local Separator) Given a graphz, ay-local separatof., (i, j) between andj, for (¢, j) ¢ G, is a
minimal vertex separatcrwith respect to the subgraph.,, ;. The parametet; is referred to as the@ath thresholdor
local separation.

In other words, they-local separatof, (i, j) separates nodésand;j with respect to paths it of length at mosty.
We now characterize the ensemble of graphs based on thef $imabseparators.

Definition 2 ((n, v)-Local Separation Property) An ensemble of grapt&(p; n, ) satisfies(n, v)-local separation
property if fora.e.G,, € S(p;n,7),

max |S,(i,7)| < n. 5
(M)MI S(@ ) < (5)

In Section 3, we propose an efficient algorithm for graphigatiel selection when the underlying graph belongs to a
graph ensembl8(p; n, v) with sparse local node separators (i.e., with smplBelow we provide examples of three
graph families which satisfy (5) for smajl

Note that the term a.a.s. does not apply to deterministiphgesasemble§ (p) where no randomness is assumed, and in this
setting, we assume that the prope@yholds for every graph in the ensemble.
A minimal separator is a separator of smallest cardinality.



(Example 1) Bounded Degree: Any (deterministic or random) ensemble of degree-boundagtgsSpe, (p, A)
satisfies thén, v)-local separation property with = A and everyy € N. Thus, our algorithm consistently recovers
graphs with small (bounded) degréeés = O(1)). This case was considered previously in several works[E5¢16].

(Example 2) Bounded Local Paths: The (n, v)-local separation property also holds when there are at mpaths

of length at mosty in G between any two nodes (henceforth, termed ag(the)-local paths property. In other
words, there are at most— 1 overlapping cycles of length smaller thaty. Thus, a graph with girtly (length of
the shortest cycle) satisfies tle, v)-local separation property with = 1 andy = g. For example, the bipartite
Ramanujan graph [17, p. 107] and the random Cayley grapfshgh& large girths. The girth condition can be
weakened to allow for a small number of short cycles, whileallmwing for overlapping cycles. Such graphs are
termed adocally tree-like For instance, the ensemble of Erd6s-Rényi graghs(p, ¢/p), where an edge between
any node pair appears with a probabilityp, independent of other node pairs, is locally tree-like. dth e shown

thatSrr(p, ¢/p) satisfiegn, v)-local separation property with= 2 andy < i‘l’f;c a.a.s. Similar observations apply
for the more generacale-freeor power-lawgraphs [8, 19]. Along similar lines, the ensemblefofandom regular
graphs, denoted b§req (p, A), which is the uniform ensemble of regular graphs with degxdeas no overlapping

cycles of length at mo$d(log, _; p) a.a.s. [20, Lemma 1].

(Example 3) Small-World Graphs: The class of hybrid graphs or augmented graphs [8, Ch. 1&istoof graphs
which are the union of two graphs: a “local” graph having $twgcles and a “global” graph having small average
distances between nodes. Since the hybrid graph is the ohitiese local and global graphs, it simultaneously has
large degrees and short cycles. The simplest mgdgl:s(p, d, ¢/p), first studied by Watts and Strogatz [9], consists
of the union of ad-dimensional grid and an Erdés-Rényi random graph wittapeterc. One can check that a.e.
graphG ~ Swatts(p, d, ¢/p) satisfies(n, v)-local separation property in (5), with= d + 2 andy < 41(1)550' Similar
observations apply for more general hybrid graphs studi¢d,iCh. 12].

3 Method and Guarantees

3.1 Assumptions

(A1) Scaling Requirements:We consider the asymptotic setting where both the numbeadables (nodes)
and the number of sampleggo to infinity. We assume that the parameters, Juin) scale in the following
fashion®

n = w(Jym logp). (6)
We require that the number of nodes— oo to exploit the local separation properties of the class apbs
under consideration.

(A2a) Strict Walk-summability for Gaussian Models: The Gaussian graphical model Markov on almost every
Gp ~ G(p) is a-walk summable, i.e.,
IRe, || <o <1, @)
whereq is a constant (i.e., is not a function pf, R¢;, := [|Rg, (i,7)]] is the entry-wise absolute value of

the partial correlation matriR ¢, . In addition,||-|| denotes the spectral norm, which for symmetric matrices,
is given by the maximum absolute eigenvalue.

(A2b) Bounded Potentials for Ising Models: The Ising model Markov on a.eG, ~ §G(p) has its maximum
absolute potential below a threshald. More precisely,

__ tanh Jpax
" tanh J*

Furthermore, the ratiev in (8) is not a function op. See [21, 22] for an explicit characterization.tf for
specific graph ensembles.

(A3) Local-Separation Property: We assume that the ensemble of graghs; n,v) satisfies ther, v)-local
separation property with, v € N satisfying:

n=0(1), Jmina 7 =&(1), 9)

<1. (8)

“Two cycles are said to overlap if they have common vertices.
®The notations(-), Q(-), o(-) andO(-) refer to asymptotics as the number of varialjies co.



wherea is given by (7) for Gaussian models and by (8) for Ising mafie¥¥e can weaken the second re-
quirementin (9) admina~ Y = w(1) for deterministic graph families (rather than random grapbembles).

(A4) Edge Potentials: The edge potential§J; ;, (i, j) € G} of the Ising model are assumed to be generically
drawn from[—Jimax; —Jmin] U [Jmin, Jmax), 1-€., OUr results hold except for a set of Lebesgue measuce z
We also characterize specific classes of models where thisrgtion can be removed and we allow for all
choices of edge potentials. See [21, 22] for details.

The above assumptions are very general and hold for a risls ofamodels. Assumption (Al) stipulates the scaling
requirements of number of samples for consistent struestiation. Assumption (A2) and (A4) impose constraints
on the model parameters. Assumption (A3) requires the dsephration property described in Section 2.2 with the
path threshold satisfying (9). We provide examples of graphs where the alaggumptions are met.

Gaussian Models on Girth-bounded Graphs:Consider the ensemble of grapfiSes, ciren (p; A, g) With maximum
degreeA and girthg. We now derive a relationship betwe@nandg, for the above assumptions to hold. It can be
established that for the walk-summability condition in €20 hold for Gaussian models, we require that, =
O(1/A). When the minimum edge potential achieves this bouhd, = ©(1/A)), a sufficient condition for (A3) to
hold is given by

Aa? = o(1). (10)
In (10), we notice a natural tradeoff between the girth amdnlaximum degree of the graph ensemble for successful
estimation under our framework: graphs with large degraade learned efficiently if their girths are large. Indeed, i
the extreme case of trees which have infinite girth, in acaoed with (10), there is no constraint on the node degrees
for consistent graphical model selection and recall thatGhow-Liu algorithm [3] is an efficient method for model
selection on tree-structured graphical models.

Note that the condition in (10) allows for the maximum dedseandA to grow with the number of nodes as long as
the girthg also grows appropriately. For example, if the maximum degmales ad& = O(poly(log p)) and the girth
scales ag = O(loglogp), then (10) is satisfied. This implies that graphs with faldsge degrees and short cycles
can be recovered successfully consistently using theittigom Section 3.2.

Gaussian Models on Erds-Renyi and Small-World Graphs: We can also conclude that a.e. Erdés-Rényi graph
G ~ Sgr(p, ¢/p) satisfies (9) withy = 2 whenc = O(poly(log p)) under the best possible scaling ff;, subject

to the walk-summability constraint in (7). Similarly, thenall-world ensembl&Swasts(p, d, ¢/p) satisfies (9) with

n =d+ 2,whend = O(1) andc = O(poly (logp)).

Ising Models: For Ising models, the best possible scaling of the minimugegabtentiall,,;,, is when.J,;,, = ©(J*),

for the threshold/* defined in (8). For the ensemble of graghisq ciren (p; A, g) With degreeA and girthg, we can
establish that/* = ©(1/A). When the minimum edge potential achieves the thresh@d Jii, = ©(1/A), we
end up with a similar requirement as in (10) for Gaussian rsod@milarly, for both the Erdés-Rényi graph ensemble
Ser(p, ¢/p) and small-world ensemb@watts (0, d, ¢/p), we can establish that the threshdid= ©(1/¢), and thus,
the observations made for the Gaussian setting hold foisthg model as well.

3.2 Conditional Mutual Information Threshold Test

Our structure learning procedure is known as the Conditithigtual Information Threshold TestCMIT). Let
CMIT (x™; &,,p, 1) be the output edge set fro@MIT givenn i.i.d. samplesk™, a thresholds,, , and a constant
n € N. The conditional mutual information test proceeds as Wedloone computes the empirical conditional mutual
informatiorf for each node paifi,j) € V2 and finds the conditioning set which achieves the minimuney @
subsets of cardinality at most

~

. I(X;; X |Xs), .
SCV\Lig} Il <n ( il Xs) a

whereI(X;; X,;|Xs) denotes the empirical conditional mutual information’f and X; givenXgs. If the above
minimum value exceeds the given threshgld,, then the node pair is declared as an edge. Recall that tluticorl
mutual information/ (X;; X;|Xs) = 0 iff given X, the random variableX; and X, are conditionally independent.

“We say that two sequencg$p), ¢(p) satisty f(p) = &(g(p)), if 725~ — oo asp — oo.

"The empirical conditional mutual information is obtainedfisst computing the empirical distribution and then conipgits
conditional mutual information.



Thus, (11) seeks to identify non-neighbors, i.e., nodespairich can be separated in the unknown gr@pldowever,
since we constrain the conditioning $6t < » in (11), the optimal conditioning set may not form an exagiasator.
Despite this restriction, we establish that the above testaorrectly classify the edges and non-neighbors using a
suitable threshold,, , subject to the assumptions (A1)—-(A4). The threslggld is chosen as a function of the number
of nodes, the number of samples and the minimum edge potentidl,;,, as follows:

lo
Snp = O(Jr?nin)7 Enp = w(a%), Enp = ( sp) ’ (12)
wherey is the path-threshold in (5) fdr, )-local separation to hold andis given by (7) and (8). The computational
complexity of theCMIT algorithm isO(p"*2). Thus the algorithm is computationally efficient for smalMoreover,
the algorithm only uses statistics of orde# 2 in contrast to the convex-relaxation approaches [4—6] wtyipically
use higher-order statistics.

Theorem 1 (Structural consistency ofCMIT) Assume that (A1)-(A4) hold. Given a Gaussian graphical hode
an Ising model Markov on a grapH,, ~ S(p; n,7v), CMIT(x"; &, p, ) is Structurally consistent. In other words,
lim P[CMIT ({x"};&np,n) # Gp] = 0. (13)

T, p—r 00

Consistency guarantee TheCMIT algorithm consistently recovers the structure of the giecgmodels with prob-
ability tending to one and the probability measure in (4) ihwespect to both the graph and the samples.

Sample-complexity The sample complexity of th€éMIT scales azQ(Jr;i‘*n log p) and is favorable when the mini-
mum edge potential,,;, is large. This is intuitive since the edges have strongesrgals when/,;, is large. On the
other hand,/,.,;;, cannot be arbitrarily large due to the assumption (A2). Tidmum sample complexity is attained

whenJ,,;, achieves this upper bound.

It can be established that for both Gaussian and Ising mddelkov on a degree-bounded graph ensemble
9pes(p, A) with maximum degreé\ and satisfying assumption (A3), the minimum sample coniplés given by
n = Q(A*logp) i.e., whens;, = O(1/A).

We can have improved guarantees for the Erdés-Rényi rargtaphsSer (p, ¢/p). In the Gaussian setting, the

minimum sample complexity can be improvedie= Q(A? logp), i.e., when/yi, = ©(1/v/A) where the maximum
degree scales & = O(logplogc) [7].

On the other hand, for Ising models, the minimum sample cerityl can be further improved to = Q(c*logp),
i.e., whenJ,i, = ©(J*) = ©(1/c). Note thate/2 is the expected degree of tBer (p, ¢/p) ensemble. Specifically,
when the Erd6s-Rényi random graphs have a bounded aveeggesc = O(1)), we can obtain a minimum sample
complexity ofn = Q(log p) for structure estimation of Ising models. Recall that thegie complexity of learning
tree models i$2(log p) [23]. Thus, the complexity of learning sparse Erdés-Réagdom graphs is akin to learning
trees in certain parameter regimes.

The sample complexity of structure estimation can be imgdden = Q(J;fn log p) by employing empirical condi-
tional covariances for Gaussian models and empirical ¢cmmdil variation distances in place of empirical conditibn
mutual information. However, to present a unified framewlrkGaussian and Ising models, we present@ha T

here. See [21, 22] for details.

Comparison with convex-relaxation approaches We now compare our approach for structure learning with
convex-relaxation methods. The work by Ravikumar et al5jreploys arf;-penalized likelihood estimator and un-
der the so-called incoherence conditions, the sample @itpisn = Q((A2 + Jr;fn) log p). Our sample complexity
(using conditional covariances)= Q(J;fn log p) is the same in terms of,,;,, While there is no explicit dependence
on the maximum degreA. Similarly, we match the neighborhood-based regressiothadeby Meinshausen and
Buhlmann in [24] under more transparent conditions.

For structure estimation of Ising models, the work in [6] siolers/; -penalized logistic regression which has a sample
complexity ofn = Q(A3logp) for a degree-bounded ensemBie.. (p, A) satisfying certain “incoherence” condi-
tions. The sample complexity &MIT, given byn = Q(A*logp), is slightly worse, while the modified algorithm
described previously has a sample complexity. of Q(A? log p), for general degree-bounded ensembles. Addition-
ally, under theCMIT algorithm, we can guarantee an improved sample complekity-e Q(c* log p) for Erdés-Rényi



random graph§gr(p, ¢/p) and small-world graph8watts(p, d, ¢/p), since the average degreg is typically much
smaller than the maximum degrée Moreover, note that, the incoherence conditions statd@]iare NP-hard to
establish for general models since they involve the partifunction of the model. In contrast, our conditions are
transparent and relate to the statistical-physical ptaseof the model. Moreover, our algorithm is local and reggsii
only low-order statistics, while the method in [6] requifeB-order statistics.

Proof Outline We first analyze the scenario when exact statistics areadlail (i) We establish that for any two
non-neighborgi, j) ¢ G, the minimum conditional mutual information in (11) (basmdexact statistics) does not
exceed the thresholg, ,.. (ii) Similarly, we also establish that the conditional maltinformation in (11) exceeds the
threshold;,, ,, for all neighborgi, j) € G. (iii) We then extend these results to empirical versiorsgisoncentration
bounds. See [21, 22] for detalils.

The main challenge in our proof is step (i). To this end, welym®athe conditional mutual information when the
conditioning set is a local separator betweéand; and establish that it decays@as—+ co. The techniques involved to
establish this for Ising and Gaussian models are diffefentsing models, we employ the self-avoiding walk (SAW)
tree construction [25]. For Gaussian models, we use thaaigabs from walk-sum analysis [14].

4 Necessary Conditions for Model Selection

In the previous sections, we proposed and analyzed effigigatithms for learning the structure of graphical models.
We now derive thenecessargonditions for consistent structure learning. We focustmnegnsemble of Erdés-Rényi

graphsGer (p, ¢/p)-

For the class of degree-bounded graghs, (p, A), necessary conditions on sample complexity have beenakara
ized previously [26] by considering a certain (restrictset)of ensembles. However, a naive application of suchdsun
(based on Fano’s inequality [27, Ch. 2]) turns out to be toakwfer the class of Erd6s-Rényi grapfisr (p, ¢/p).

We provide novel necessary conditions for structure legrif Erdés-Rényi graphs. Our techniques may also be
applicable to other classes of random graphs.

Recall that a grapty is drawn from the ensemble of Erdés-Rényi graghs (p, ¢/p). Givenn i.i.d. sampleX" :=

(Xq,...,X,) € (XP)", the task is to estimat@ from X". Denote the estimated graph@s= G(X™). ltis desired
to derive tight necessary conditions on the number of sasnpl@s a function of average degre&£ and number of

nodesp) so that theprobability of error PP .= P(@(X”) # G) — 0 as the number of nodestends to infinity.
Again, note that the probability measuPdas with respect to both the Erdés-Rényi graph and the sasnpl

Discrete Graphical Models Let Hy,(¢) := —qlog, ¢ — (1 — q)log,(1 — ¢) be the binary entropy function. For
the Ising model, or more generally any discrete model whach eandom variabl&; € X = {1,...,|X|}, we can
demonstrate the following:

Theorem 2 (Weak Converse for Discrete Models)ror a discrete graphical model Markov a@# ~ Sgr(p, ¢/p), if
PP 5 0,itis necessary fon to satisfy

1 p) <c> clogy p
n>-——— Hy (- | > —2. (14)
plog, [ X (2 p 2log; | X

The above bound does not involve any asymptotic notationstwosis transparently, how has to depend op, ¢
and|X| for consistent structure learning. Note that if the cartiipaf the random variablesY'| is large, then the
necessary sample complexity is small, which makes ingigense from a source-coding perspective. Moreover, the
above bound states that more samples are required as tlagavigree/2 increases. Our bound involves only the
average degree/2 and not the maximum degree of the graph, which is typicallgimarger thare [7].

Gaussian Graphical Models We now turn out attention to the Gaussian analogue of The@emder a similar
setup. We assume that thewalk-summability condition in assumption (A2a) holds. ¥fe then able to demonstrate
the following:



Theorem 3 (Weak Converse for Gaussian ModelsJor an a-walk summable Gaussian graphical model Markov on
G ~ Ser(p, c/p) asp — oo, if PP — 0, we require

2 p ¢ clogy p
el (] 6 e Gy oo

As with Theorem 2, the above bound does not involve any asytisgtotation and similar intuitions hold as before.
There is a natural logarithmic dependence@md a linear dependence on the average degree parairieieally, the
dependence oa can be explained as follows: anywalk-summable model is als®walk-summable for alb > «.
Thus, the class of-walk-summable models contains the classefalk-summable models. This results in a looser
bound in (15) for largex.

Analysis tools Our analysis tools are information-theoretic in nature afnenon tool to derive necessary conditions

is to resort to Fano’s inequality [27, Ch. 2], which (lowedumds the probability of erroPe(”) as a function of the
conditional entropyH (G|X"™) and the size of the set of all graphs wjimodes. However, a naive application of
Fano’s inequality results in a trivial lower bound as thedcfetll graphs, which can be realized By (p, ¢/p) is “too
large”.

To ameliorate this problem, we focus our attention ontifpgcal graphs for applying Fano’s inequality and not all
graphs. The set of typical graphs has a small cardinalithigt probability wher is large. The novelty of our proof
lies in our use of both typicality as well as Fano’s ineqyalit derive necessary conditions for structure learning. We
can show that (i) the probability of the typical set tendsie asp — oo, (ii) the graphs in the typical set are almost
uniformly distributed (the asymptotic equipartition pesty), (iii) the cardinality of the typical set is small réize to

the set of all graphs. These properties are used to provedimsd® and 3.

5 Conclusion

In this paper, we adopted a novel and a unified paradigm fgohgcal model selection. We presented a simple local
algorithm for structure estimation with low computatioaatl sample complexities under a set of mild and transparent
conditions. This algorithm succeeds on a wide range of gesggembles such as the Erdés-Rényi ensemble, small-
world networks etc. We also employed novel informationettet¢ic techniques for establishing necessary conditions
for graphical model selection.
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