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Abstract

We consider the problem of Ising and Gaussian graphical model selection givenn i.i.d. samples
from the model. We propose an efficient threshold-based algorithm for structure estimation based
on conditional mutual information thresholding. This simple local algorithm requires only low-
order statistics of the data and decides whether two nodes are neighbors in the unknown graph.
We identify graph families for which the proposed algorithmhas low sample and computational
complexities. Under some transparent assumptions, we establish that the proposed algorithm is
structurally consistent (or sparsistent) when the number of samples scales asn = Ω(J−4

min log p),
wherep is the number of nodes andJmin is the minimum edge potential. We also develop novel
non-asymptotic techniques for obtaining necessary conditions for graphical model selection.

Keywords: Graphical model selection, high-dimensional learning, local-separation property, necessary conditions,
typical sets, Fano’s inequality.

1 Introduction

The formalism of probabilistic graphical models can be employed to represent dependencies among a large set of
random variables in the form of a graph [1]. An important challenge in the study of graphical models is to learn
the unknown graph using samples drawn from the graphical model. The general structure estimation problem is
NP-hard [2]. In thehigh-dimensionalregime, structure estimation is even more difficult since the number of available
observations is typically much smaller than the number of dimensions (or variables). One of the goals is to characterize
tractable model classes for which consistent graphical model selection can be guaranteed with low computational and
sample complexities.

The seminal work by Chow and Liu [3] proposed an efficient algorithm for maximum-likelihood structure estimation
in tree-structured graphical models by reducing the problem to a maximum weight spanning tree problem. A more
recent approach for efficient structure estimation is basedon convex-relaxation [4–6]. The success of such methods
typically requires certain “incoherence” conditions to hold. However, these conditions are NP-hard to verify for
general graphical models.

We adopt an alternative paradigm in this paper and instead analyze a simple local algorithm which requires only
low-order statistics of the data and makes decisions on whether two nodes are neighbors in the unknown graph. We
characterize the class of Ising and Gaussian graphical models for which we can guarantee efficient and consistent
structure estimation using this simple algorithm. The class of graphs is based on alocal-separationproperty and
includes many well-known random graph families, includinglocally-treelike graphs such as large girth graphs, the
Erdős-Rényi random graphs [7] and power-law graphs [8], as well as graphs with short cycles such as bounded-degree
graphs, and small-world graphs [9]. These graphs are especially relevant in modeling social networks [10,11].
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1.1 Summary of Results

We propose an algorithm for structure estimation, termed asconditional mutual information thresholding (CMIT),
which computes the minimum empirical conditional mutual information of a given node pair over conditioning sets
of bounded cardinalityη. If the minimum exceeds a given threshold (depending on the number of samplesn and the
number of nodesp), the node pair is declared as an edge. This test has a low computational complexity ofO(pη+2)
and requires only low-order statistics (up to orderη + 2) whenη is small. The parameterη is an upper bound on the
size of local vertex-separators in the graph, and is small for many common graph families, as discussed earlier. We
establish that under a set of mild and transparent assumptions, structure learning is consistent in high-dimensions for
CMIT when the number of samples scales asn = Ω(J−4

min log p), for a p-node graph, whereJmin is the minimum
(absolute) edge-potential in the model.

We also develop novel techniques to obtain necessary conditions for consistent structure estimation of Erdős-Rényi
random graphs. We obtain non-asymptotic bounds on the number of samplesn in terms of the expected degree and
the number of nodes of the model. The techniques employed areinformation-theoretic in nature and combine the use
of Fano’s inequality and the so-called asymptotic equipartition property.

Our results have many ramifications: we explicitly characterize the tradeoff between various graph parameters such
as the maximum degree, girth and the strength of edge potentials for efficient and consistent structure estimation. We
draw connections between structure learning and the statistical physical properties of the model: learning is fundamen-
tally related to the absence of long-range dependencies in the model, i.e., the regime ofcorrelation decay. The notion
of correlation decay on Ising models has been extensively characterized [12], but its connections to structure learning
have only been explored in a few recent works (e.g., [13]). This work establishes that consistent structure learning is
feasible under a slightly weaker condition than the usual notion of correlation decay for a rich class of graphs. More-
over, we show that the Gaussian analog of correlation decay is the so-calledwalk-summabilitycondition [14]. This is
a somewhat unexpected and surprising connection since walk-summability is a condition to characterize the perfor-
mance of inference algorithms such as loopy belief propagation (LBP). Our work demonstrates that both successful
inference and learning hinge on similar properties of the Gaussian graphical model.

2 Preliminaries

2.1 Graphical Models

A p-dimensionalgraphical modelis a family ofp-dimensional multivariate distributions Markov on some undirected
graphG=(V,E) [1]. Each node in the graphi ∈ V is associated to a random variableXi taking values in a setX . We
consider both discrete (in particular Ising) models whereX is a finite set and Gaussian models whereX = R. The set
of edgesE captures the set of conditional-independence relationships among the random variables. More specifically,
the vector of random variablesX := (X1, . . . , Xp) with joint distributionP satisfies theglobal Markovproperty with
respect to a graphG, if for all disjoint setsA,B ⊂ V , we have

P (xA,xB|xS) = P (xA|xS)P (xB |xS). (1)

where setS is a separator1betweenA andB. The Hammersley-Clifford theorem states that under thepositivity
condition, given byP (x) > 0 for all x ∈ X p [1], the modelP satisfies the global Markov property according to a
graphG if and only if it factorizes according to the cliques ofG.

We consider the class of Ising models, i.e., binary pairwisemodels which factorize according to the edges of the graph.
More precisely, the probability mass function (pmf) of an Ising model is

P (x) ∝ exp

[
1

2
x
T
JGx+ h

T
x

]
, x ∈ {−1, 1}p. (2)

For Gaussian graphical models, the probability density function (pdf) is of the form,

f(x) ∝ exp

[
−1

2
x
T
JGx+ h

T
x

]
, x ∈ R

p. (3)

1A setS ⊂ V is a separator of setsA andB if the removal of nodes inS separatesA andB into distinct components.
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In both the cases, the matrixJG is called the potential or information matrix andh, the potential vector. For both Ising
and Gaussian models, the sparsity pattern of the matrixJG corresponds to that of the graphG, i.e.,JG(i, j) = 0 if and
only if (i, j) /∈ G.

We assume that the potentials are uniformly bounded above and below as:

Jmin ≤ |JG(i, j)| ≤ Jmax, ∀ (i, j) ∈ G. (4)

Our results on structure learning depend onJmin andJmax, which is fairly natural – intuitively, models with edge
potentials which are “too small” or “too large” are harder tolearn than those with comparable potentials, i.e., homoge-
nous models.

Notice that the conventional parameterizations for the Ising models in (2) and the Gaussian models in (3) are slightly
different. Without loss of generality, for Ising model, we assume thatJ(i, i) = 0 for all i ∈ V . On the other hand, in
the Gaussian setting, we assume that the diagonal elements of the inverse covariance (or information) matrixJG are
normalized to unity(J(i, i) = 1, i ∈ V ), and thatJG can be decomposed asJG = I−RG, whereRG is the matrix
of partial correlation coefficients [14].

We consider the problem ofstructure learning, which involves the estimation of the edge set of the graphG givenn
i.i.d. samplesX1, . . . ,Xn drawn either from the Ising model in (2) or the Gaussian modelin (3). We consider the
high-dimensional regime, where bothp andn grow simultaneously; typically, the growth ofp is much faster than that
of n.

2.2 Tractable Graph Families

We consider the class of graphical models Markov on a graphGp belonging to some ensembleG(p) of graphs with
p nodes. We emphasize that in our formulation the graph ensemble G(p) can either be deterministic or random
– in the latter, we also specify a probability measure over the set of graphs inG(p). In the random setting, we
use the termalmost every(a.e.) graphG ∼ G(p) satisfies a certain propertyQ (for example, connectedness) if
limp→∞ P [Gp satisfiesQ] = 1. In other words, the propertyQ holds asymptotically almost surely2 (a.a.s.) with
respect to the random graph ensembleG(p). Intuitively, this means that graphs that have a vanishing probability of
occurrence asp → ∞ are ignored. Our conditions and theoretical guarantees will be based on this notion for random
graph ensembles.

We now characterize the ensemble of graphs amenable for consistent structure estimation. Forγ ∈ N, let Bγ(i;G)
denote the set of vertices within distanceγ from nodei with respect to graphG. Let Hγ,i := G(Bγ(i;G)) de-
note the subgraph ofG spanned byBγ(i;G), but in addition, we retain the nodes not inBγ(i;G) (and remove the
corresponding edges).

Definition 1 (γ-Local Separator) Given a graphG, a γ-local separatorSγ(i, j) betweeni andj, for (i, j) /∈ G, is a
minimalvertex separator3 with respect to the subgraphHγ,i. The parameterγ is referred to as thepath thresholdfor
local separation.

In other words, theγ-local separatorSγ(i, j) separates nodesi andj with respect to paths inG of length at mostγ.
We now characterize the ensemble of graphs based on the size of local separators.

Definition 2 ((η, γ)-Local Separation Property) An ensemble of graphsG(p; η, γ) satisfies(η, γ)-local separation
property if for a.e.Gp ∈ G(p; η, γ),

max
(i,j)/∈Gp

|Sγ(i, j)| ≤ η. (5)

In Section 3, we propose an efficient algorithm for graphicalmodel selection when the underlying graph belongs to a
graph ensembleG(p; η, γ) with sparse local node separators (i.e., with smallη). Below we provide examples of three
graph families which satisfy (5) for smallη.

2Note that the term a.a.s. does not apply to deterministic graph ensemblesG(p) where no randomness is assumed, and in this
setting, we assume that the propertyQ holds for every graph in the ensemble.

3A minimal separator is a separator of smallest cardinality.
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(Example 1) Bounded Degree: Any (deterministic or random) ensemble of degree-bounded graphsGDeg(p,∆)
satisfies the(η, γ)-local separation property withη = ∆ and everyγ ∈ N. Thus, our algorithm consistently recovers
graphs with small (bounded) degrees(∆ = O(1)). This case was considered previously in several works, e.g.[15,16].

(Example 2) Bounded Local Paths: The(η, γ)-local separation property also holds when there are at mostη paths
of length at mostγ in G between any two nodes (henceforth, termed as the(η, γ)-local paths property). In other
words, there are at mostη − 1 overlapping4 cycles of length smaller than2γ. Thus, a graph with girthg (length of
the shortest cycle) satisfies the(η, γ)-local separation property withη = 1 andγ = g. For example, the bipartite
Ramanujan graph [17, p. 107] and the random Cayley graphs [18] have large girths. The girth condition can be
weakened to allow for a small number of short cycles, while not allowing for overlapping cycles. Such graphs are
termed aslocally tree-like. For instance, the ensemble of Erdős-Rényi graphsGER(p, c/p), where an edge between
any node pair appears with a probabilityc/p, independent of other node pairs, is locally tree-like. It can be shown
thatGER(p, c/p) satisfies(η, γ)-local separation property withη = 2 andγ ≤ log p

4 log c a.a.s. Similar observations apply
for the more generalscale-freeor power-lawgraphs [8, 19]. Along similar lines, the ensemble of∆-random regular
graphs, denoted byGReg(p,∆), which is the uniform ensemble of regular graphs with degree∆ has no overlapping
cycles of length at mostΘ(log∆−1 p) a.a.s. [20, Lemma 1].

(Example 3) Small-World Graphs: The class of hybrid graphs or augmented graphs [8, Ch. 12] consist of graphs
which are the union of two graphs: a “local” graph having short cycles and a “global” graph having small average
distances between nodes. Since the hybrid graph is the unionof these local and global graphs, it simultaneously has
large degrees and short cycles. The simplest modelGWatts(p, d, c/p), first studied by Watts and Strogatz [9], consists
of the union of ad-dimensional grid and an Erdős-Rényi random graph with parameterc. One can check that a.e.
graphG ∼ GWatts(p, d, c/p) satisfies(η, γ)-local separation property in (5), withη = d + 2 andγ ≤ log p

4 log c . Similar
observations apply for more general hybrid graphs studied in [8, Ch. 12].

3 Method and Guarantees

3.1 Assumptions

(A1) Scaling Requirements:We consider the asymptotic setting where both the number of variables (nodes)p
and the number of samplesn go to infinity. We assume that the parameters(n, p, Jmin) scale in the following
fashion:5

n = ω(J−4
min log p). (6)

We require that the number of nodesp → ∞ to exploit the local separation properties of the class of graphs
under consideration.

(A2a) Strict Walk-summability for Gaussian Models: The Gaussian graphical model Markov on almost every
Gp ∼ G(p) is α-walk summable, i.e.,

‖RGp
‖ ≤ α < 1, (7)

whereα is a constant (i.e., is not a function ofp), RGp
:= [|RGp

(i, j)|] is the entry-wise absolute value of
the partial correlation matrixRGp

. In addition,‖·‖ denotes the spectral norm, which for symmetric matrices,
is given by the maximum absolute eigenvalue.

(A2b) Bounded Potentials for Ising Models: The Ising model Markov on a.e.Gp ∼ G(p) has its maximum
absolute potential below a thresholdJ∗. More precisely,

α :=
tanh Jmax

tanh J∗
< 1. (8)

Furthermore, the ratioα in (8) is not a function ofp. See [21, 22] for an explicit characterization ofJ∗ for
specific graph ensembles.

(A3) Local-Separation Property: We assume that the ensemble of graphsG(p; η, γ) satisfies the(η, γ)-local
separation property withη, γ ∈ N satisfying:

η = O(1), Jminα
−γ = ω̃(1), (9)

4Two cycles are said to overlap if they have common vertices.
5The notationsω(·), Ω(·), o(·) andO(·) refer to asymptotics as the number of variablesp → ∞.

4



whereα is given by (7) for Gaussian models and by (8) for Ising models.6 We can weaken the second re-
quirement in (9) asJminα

−γ = ω(1) for deterministic graph families (rather than random graphensembles).

(A4) Edge Potentials: The edge potentials{Ji,j , (i, j) ∈ G} of the Ising model are assumed to be generically
drawn from[−Jmax,−Jmin] ∪ [Jmin, Jmax], i.e., our results hold except for a set of Lebesgue measure zero.
We also characterize specific classes of models where this assumption can be removed and we allow for all
choices of edge potentials. See [21,22] for details.

The above assumptions are very general and hold for a rich class of models. Assumption (A1) stipulates the scaling
requirements of number of samples for consistent structureestimation. Assumption (A2) and (A4) impose constraints
on the model parameters. Assumption (A3) requires the local-separation property described in Section 2.2 with the
path thresholdγ satisfying (9). We provide examples of graphs where the above assumptions are met.

Gaussian Models on Girth-bounded Graphs:Consider the ensemble of graphsGDeg,Girth(p; ∆, g) with maximum
degree∆ and girthg. We now derive a relationship between∆ andg, for the above assumptions to hold. It can be
established that for the walk-summability condition in (A2a) to hold for Gaussian models, we require thatJmax =
O(1/∆). When the minimum edge potential achieves this bound(Jmin = Θ(1/∆)), a sufficient condition for (A3) to
hold is given by

∆αg = o(1). (10)

In (10), we notice a natural tradeoff between the girth and the maximum degree of the graph ensemble for successful
estimation under our framework: graphs with large degrees can be learned efficiently if their girths are large. Indeed, in
the extreme case of trees which have infinite girth, in accordance with (10), there is no constraint on the node degrees
for consistent graphical model selection and recall that the Chow-Liu algorithm [3] is an efficient method for model
selection on tree-structured graphical models.

Note that the condition in (10) allows for the maximum degreebound∆ to grow with the number of nodes as long as
the girthg also grows appropriately. For example, if the maximum degree scales as∆ = O(poly(log p)) and the girth
scales asg = O(log log p), then (10) is satisfied. This implies that graphs with fairlylarge degrees and short cycles
can be recovered successfully consistently using the algorithm in Section 3.2.

Gaussian Models on Erd̋os-Rényi and Small-World Graphs: We can also conclude that a.e. Erdős-Rényi graph
G ∼ GER(p, c/p) satisfies (9) withη = 2 whenc = O(poly(log p)) under the best possible scaling forJmin subject
to the walk-summability constraint in (7). Similarly, the small-world ensembleGWatts(p, d, c/p) satisfies (9) with
η = d+ 2, whend = O(1) andc = O(poly(log p)).

Ising Models: For Ising models, the best possible scaling of the minimum edge potentialJmin is whenJmin = Θ(J∗),
for the thresholdJ∗ defined in (8). For the ensemble of graphsGDeg,Girth(p; ∆, g) with degree∆ and girthg, we can
establish thatJ∗ = Θ(1/∆). When the minimum edge potential achieves the threshold, i.e.,Jmin = Θ(1/∆), we
end up with a similar requirement as in (10) for Gaussian models. Similarly, for both the Erdős-Rényi graph ensemble
GER(p, c/p) and small-world ensembleGWatts(p, d, c/p), we can establish that the thresholdJ∗ = Θ(1/c), and thus,
the observations made for the Gaussian setting hold for the Ising model as well.

3.2 Conditional Mutual Information Threshold Test

Our structure learning procedure is known as the Conditional Mutual Information Threshold Test(CMIT). Let
CMIT(xn; ξn,p, η) be the output edge set fromCMIT given n i.i.d. samplesxn, a thresholdξn,p and a constant
η ∈ N. The conditional mutual information test proceeds as follows: one computes the empirical conditional mutual
information7 for each node pair(i, j) ∈ V 2 and finds the conditioning set which achieves the minimum, over all
subsets of cardinality at mostη,

min
S⊂V \{i,j},|S|≤η

Î(Xi;Xj |XS), (11)

whereÎ(Xi;Xj |XS) denotes the empirical conditional mutual information ofXi andXj givenXS . If the above
minimum value exceeds the given thresholdξn,p, then the node pair is declared as an edge. Recall that the conditional
mutual informationI(Xi;Xj |XS) = 0 iff given XS , the random variablesXi andXj are conditionally independent.

6We say that two sequencesf(p), g(p) satisfyf(p) = ω̃(g(p)), if f(p)
g(p) log p

→ ∞ asp → ∞.
7The empirical conditional mutual information is obtained by first computing the empirical distribution and then computing its

conditional mutual information.
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Thus, (11) seeks to identify non-neighbors, i.e., node pairs which can be separated in the unknown graphG. However,
since we constrain the conditioning set|S| ≤ η in (11), the optimal conditioning set may not form an exact separator.
Despite this restriction, we establish that the above test can correctly classify the edges and non-neighbors using a
suitable thresholdξn,p subject to the assumptions (A1)–(A4). The thresholdξn,p is chosen as a function of the number
of nodesp, the number of samplesn, and the minimum edge potentialJmin as follows:

ξn,p = O(J2
min), ξn,p = ω(α2γ), ξn,p = Ω

(
log p

n

)
, (12)

whereγ is the path-threshold in (5) for(η, γ)-local separation to hold andα is given by (7) and (8). The computational
complexity of theCMIT algorithm isO(pη+2). Thus the algorithm is computationally efficient for smallη. Moreover,
the algorithm only uses statistics of orderη + 2 in contrast to the convex-relaxation approaches [4–6] which typically
use higher-order statistics.

Theorem 1 (Structural consistency ofCMIT) Assume that (A1)-(A4) hold. Given a Gaussian graphical model or
an Ising model Markov on a graphGp ∼ G(p; η, γ), CMIT(xn; ξn,p, η) is structurally consistent. In other words,

lim
n,p→∞

P [CMIT ({xn}; ξn,p, η) 6= Gp] = 0. (13)

Consistency guarantee TheCMIT algorithm consistently recovers the structure of the graphical models with prob-
ability tending to one and the probability measure in (4) is with respect to both the graph and the samples.

Sample-complexity The sample complexity of theCMIT scales asΩ(J−4
min log p) and is favorable when the mini-

mum edge potentialJmin is large. This is intuitive since the edges have stronger potentials whenJmin is large. On the
other hand,Jmin cannot be arbitrarily large due to the assumption (A2). The minimum sample complexity is attained
whenJmin achieves this upper bound.

It can be established that for both Gaussian and Ising modelsMarkov on a degree-bounded graph ensemble
GDeg(p,∆) with maximum degree∆ and satisfying assumption (A3), the minimum sample complexity is given by
n = Ω(∆4 log p) i.e., whenJmin = Θ(1/∆).

We can have improved guarantees for the Erdős-Rényi random graphsGER(p, c/p). In the Gaussian setting, the
minimum sample complexity can be improved ton = Ω(∆2 log p), i.e., whenJmin = Θ(1/

√
∆) where the maximum

degree scales as∆ = Θ(log p log c) [7].

On the other hand, for Ising models, the minimum sample complexity can be further improved ton = Ω(c4 log p),
i.e., whenJmin = Θ(J∗) = Θ(1/c). Note thatc/2 is the expected degree of theGER(p, c/p) ensemble. Specifically,
when the Erdős-Rényi random graphs have a bounded averagedegree(c = O(1)), we can obtain a minimum sample
complexity ofn = Ω(log p) for structure estimation of Ising models. Recall that the sample complexity of learning
tree models isΩ(log p) [23]. Thus, the complexity of learning sparse Erdős-Rényi random graphs is akin to learning
trees in certain parameter regimes.

The sample complexity of structure estimation can be improved ton = Ω(J−2
min log p) by employing empirical condi-

tional covariances for Gaussian models and empirical conditional variation distances in place of empirical conditional
mutual information. However, to present a unified frameworkfor Gaussian and Ising models, we present theCMIT

here. See [21,22] for details.

Comparison with convex-relaxation approaches We now compare our approach for structure learning with
convex-relaxation methods. The work by Ravikumar et al. in [5] employs aǹ 1-penalized likelihood estimator and un-
der the so-called incoherence conditions, the sample complexity isn = Ω((∆2+J−2

min) log p). Our sample complexity
(using conditional covariances)n = Ω(J−2

min log p) is the same in terms ofJmin, while there is no explicit dependence
on the maximum degree∆. Similarly, we match the neighborhood-based regression method by Meinshausen and
Buhlmann in [24] under more transparent conditions.

For structure estimation of Ising models, the work in [6] considers̀ 1-penalized logistic regression which has a sample
complexity ofn = Ω(∆3 log p) for a degree-bounded ensembleGDeg(p,∆) satisfying certain “incoherence” condi-
tions. The sample complexity ofCMIT, given byn = Ω(∆4 log p), is slightly worse, while the modified algorithm
described previously has a sample complexity ofn = Ω(∆2 log p), for general degree-bounded ensembles. Addition-
ally, under theCMIT algorithm, we can guarantee an improved sample complexity of n = Ω(c4 log p) for Erdős-Rényi
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random graphsGER(p, c/p) and small-world graphsGWatts(p, d, c/p), since the average degreec/2 is typically much
smaller than the maximum degree∆. Moreover, note that, the incoherence conditions stated in[6] are NP-hard to
establish for general models since they involve the partition function of the model. In contrast, our conditions are
transparent and relate to the statistical-physical properties of the model. Moreover, our algorithm is local and requires
only low-order statistics, while the method in [6] requiresfull-order statistics.

Proof Outline We first analyze the scenario when exact statistics are available. (i) We establish that for any two
non-neighbors(i, j) /∈ G, the minimum conditional mutual information in (11) (basedon exact statistics) does not
exceed the thresholdξn,p. (ii) Similarly, we also establish that the conditional mutual information in (11) exceeds the
thresholdξn,p for all neighbors(i, j) ∈ G. (iii) We then extend these results to empirical versions using concentration
bounds. See [21,22] for details.

The main challenge in our proof is step (i). To this end, we analyze the conditional mutual information when the
conditioning set is a local separator betweeni andj and establish that it decays asp → ∞. The techniques involved to
establish this for Ising and Gaussian models are different:for Ising models, we employ the self-avoiding walk (SAW)
tree construction [25]. For Gaussian models, we use the techniques from walk-sum analysis [14].

4 Necessary Conditions for Model Selection

In the previous sections, we proposed and analyzed efficientalgorithms for learning the structure of graphical models.
We now derive thenecessaryconditions for consistent structure learning. We focus on the ensemble of Erdős-Rényi
graphsGER(p, c/p).

For the class of degree-bounded graphsGDeg(p,∆), necessary conditions on sample complexity have been character-
ized previously [26] by considering a certain (restricted)set of ensembles. However, a naı̈ve application of such bounds
(based on Fano’s inequality [27, Ch. 2]) turns out to be too weak for the class of Erdős-Rényi graphsGER(p, c/p).
We provide novel necessary conditions for structure learning of Erdős-Rényi graphs. Our techniques may also be
applicable to other classes of random graphs.

Recall that a graphG is drawn from the ensemble of Erdős-Rényi graphsGER(p, c/p). Givenn i.i.d. samplesXn :=

(X1, . . . ,Xn) ∈ (X p)n, the task is to estimateG fromX
n. Denote the estimated graph asĜ := Ĝ(Xn). It is desired

to derive tight necessary conditions on the number of samplesn (as a function of average degreec/2 and number of

nodesp) so that theprobability of errorP (p)
e := P (Ĝ(Xn) 6= G) → 0 as the number of nodesp tends to infinity.

Again, note that the probability measureP is with respect to both the Erdős-Rényi graph and the samples.

Discrete Graphical Models Let Hb(q) := −q log2 q − (1 − q) log2(1 − q) be the binary entropy function. For
the Ising model, or more generally any discrete model where each random variableXi ∈ X = {1, . . . , |X |}, we can
demonstrate the following:

Theorem 2 (Weak Converse for Discrete Models)For a discrete graphical model Markov onG ∼ GER(p, c/p), if

P
(p)
e → 0, it is necessary forn to satisfy

n ≥ 1

p log2 |X |

(
p

2

)
Hb

(
c

p

)
≥ c log2 p

2 log2 |X | . (14)

The above bound does not involve any asymptotic notation andshows transparently, hown has to depend onp, c
and |X | for consistent structure learning. Note that if the cardinality of the random variables|X | is large, then the
necessary sample complexity is small, which makes intuitive sense from a source-coding perspective. Moreover, the
above bound states that more samples are required as the average degreec/2 increases. Our bound involves only the
average degreec/2 and not the maximum degree of the graph, which is typically much larger thanc [7].

Gaussian Graphical Models We now turn out attention to the Gaussian analogue of Theorem2 under a similar
setup. We assume that theα-walk-summability condition in assumption (A2a) holds. Weare then able to demonstrate
the following:

7



Theorem 3 (Weak Converse for Gaussian Models)For anα-walk summable Gaussian graphical model Markov on
G ∼ GER(p, c/p) asp → ∞, if P (p)

e → 0, we require

n ≥ 2

p log2

[
2πe

(
1

1−α + 1
)]

(
p

2

)
Hb

(
c

p

)
≥ c log2 p

log2

[
2πe

(
1

1−α + 1
)] . (15)

As with Theorem 2, the above bound does not involve any asymptotic notation and similar intuitions hold as before.
There is a natural logarithmic dependence onp and a linear dependence on the average degree parameterc. Finally, the
dependence onα can be explained as follows: anyα-walk-summable model is alsoβ-walk-summable for allβ > α.
Thus, the class ofβ-walk-summable models contains the class ofα-walk-summable models. This results in a looser
bound in (15) for largeα.

Analysis tools Our analysis tools are information-theoretic in nature. A common tool to derive necessary conditions
is to resort to Fano’s inequality [27, Ch. 2], which (lower) bounds the probability of errorP (p)

e as a function of the
conditional entropyH(G|Xn) and the size of the set of all graphs withp nodes. However, a naı̈ve application of
Fano’s inequality results in a trivial lower bound as the setof all graphs, which can be realized byGER(p, c/p) is “too
large”.

To ameliorate this problem, we focus our attention on thetypical graphs for applying Fano’s inequality and not all
graphs. The set of typical graphs has a small cardinality buthigh probability whenp is large. The novelty of our proof
lies in our use of both typicality as well as Fano’s inequality to derive necessary conditions for structure learning. We
can show that (i) the probability of the typical set tends to one asp → ∞, (ii) the graphs in the typical set are almost
uniformly distributed (the asymptotic equipartition property), (iii) the cardinality of the typical set is small relative to
the set of all graphs. These properties are used to prove Theorems 2 and 3.

5 Conclusion

In this paper, we adopted a novel and a unified paradigm for graphical model selection. We presented a simple local
algorithm for structure estimation with low computationaland sample complexities under a set of mild and transparent
conditions. This algorithm succeeds on a wide range of graphensembles such as the Erdős-Rényi ensemble, small-
world networks etc. We also employed novel information-theoretic techniques for establishing necessary conditions
for graphical model selection.
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