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Partition Function Computation

* Normalization constant in factored probabilistic models (e.g., MRFs, MLNs
with soft probabilistic constraints)

Z = Sum over exponentially many configurations
=== Hard to compute. Can we approximate it?

* Flat Histogram method (Wang-Landau)

Adaptive MCMC will eventually visit all subsets
(= colors = energy levels) equally often (Contrast:
Metropolis/SA, according to Boltzmann weight)
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Estimates the size of the subsets (density of states),
which also gives the partition function Z



Our Contributions

1a. Energy Saturation: single bucket for high energy states

* Fewer buckets === faster
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* (Tight) Upper bound on Z
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Increasing energy

1b. Focused moves: variables occurring in violated constraints are flipped
more frequently (preserving detailed balance)
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2. New application: density of states gives parameterized partition function
e.g. at all temperatures, all weights of the soft constraints === learning



Experimental Results

* Improved Scaling
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* Better Accuracy (vs. Gibbs Sampling, TRW, 1JGP)
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* Hard Constraints (model counting)
* Soft Constraints
* Hard & Soft constraints
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* Improved Weight Learning

Close to optimal likelihoods for the trained weights in synthetic Markov Logic
Networks



