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Abstract

In this paper we describe a maximum likelihood approach ifctiahary learning
in the multiplicative exponential noise model. This modeprevalent in audio
signal processing where it underlies a generative congasitdel of the power
spectrogram. Maximum joint likelihood estimation of thetbnary and expan-
sion coefficients leads to a nonnegative matrix factorraproblem where the
Itakura-Saito divergence is used. The optimality of thigrapch is in question be-
cause the number of parameters (which include the expaosgfficients) grows
with the number of observations. In this paper we descritsiational procedure
for optimization of the marginal likelihood, i.e., the likeood of the dictionary
where the activation coefficients have been integratedgiveif a specific prior).
We compare the output of both maximum joint likelihood estiion (i.e., stan-
dard Itakura-Saito NMF) and maximum marginal likelihootiraation (MMLE)
on real and synthetical datasets. The MMLE approach is shovembed auto-
matic model order selection, akin to automatic relevant¢erdenation.

1 Introduction

In this paper we address the task of nonnegative dictioramning described by
V ~WH, Q)

whereV, W, H are nonnegative matrices of dimensidns N, F' x K andK x N, respectivelyl

is the data matrix, where each columnis a data point}V is the dictionary matrix, with columns
{wy} acting as “patterns” or “explanatory variables” reprenatwve of the data, and is the acti-
vation matrix, with columngh,,}. For example, in this paper we will be interested in musiadat
such that/ is time-frequency spectrogram matrix aidis a collection of spectral signatures of la-
tent elementary audio components. The most common apptoacnnegative dictionary learning
is nonnegative matrix factorization (NMF) [1] which cortsign retrieving the factorization (1) by
solving

. def
= .t >
%1,1ED(V|WH) E n A |[WH]s) st W,H>0, (2)

whered(z|y) is a measure of fit between nonnegative scalars,are the entries o, andA > 0
expresses nonnegativity of the entries of mattixThe cost functiorD(V|W H) is often a likeli-
hood function- log p(V|W, H) in disguise, e.g., the Euclidean distance underlies agdBaussian
noise, the Kullback-Leibler (KL) divergence underlies$3minian noise, while the Itakura-Saito (I1S)
divergence underlies multiplicative exponential noisg [the latter noise model will be central to
this work because it underlies a suitable generative mddbegower spectrogram, as shown in [3]
and later recalled.



A criticism about NMF is that little can be said about the apymtical optimality of the learnt
dictionarylV. Indeed, becaud@’ is estimated jointly withi, the total number of parametersx +

K N grows with the number of data poind. As such, this paper instead addresses optimization of
the likelihood in the marginal model described by

p(VIW) = /H p(V|W, H)p(H)dH, 3)

whereH is treated as a random latent variable with pgigH ). The evaluation and optimization of
the marginal likelihood is not trivial in general, and thipger is precisely devoted to these tasks in
the multiplicative exponential noise model.

The maximum marginal likelihood estimation approach wekdemre is related to IS-NMF in such
a way that Latent Dirichlet Allocation (LDA) [4] is related tLatent Semantic Indexing (pLSI)
[5]. LDA and pLSI are two estimators in the same model, but L&#ks estimation of the topic
distributions in the marginal model, from which the topicigigs describing each document have
been integrated out. In contrast, pLSI (which is essegteguivalent to KL-NMF as shown in [6])
performs maximunjoint likelihood estimation (MJLE) for the topics and weights.eBét al. [4]
show the better performance of LDA with respect to (w.r.tppl\Wellinget al. [7] also report similar
results with a discussion, stating that deterministiciat@riable models assign zero probability to
input configurations that do not appear in the training sedindilar approach is Discrete Component
Analysis (DCA) [8] which considers maximum marginal a poisté estimation in the Gamma-
Poisson (GaP) model [9], see also [10] for the maximum maifdjkelihood estimation on the same
model. In this paper, we will follow the same objective foetmultiplicative exponential noise
model.

We will describe a variational algorithm for the evaluatiamd optimization of (3); note that the
algorithm exploits specificities of the model and is not a enadaptation of LDA or DCA to an
alternative setting. We will consider a nonnegative Gelimrd inverse-Gaussian (GIG) distribution
as a prior forH, a flexible distribution which takes the Gamma and inversen@®a as special
cases. As will be detailed later, this work relates to recemtk by Hoffmanet al. [11], which
considers full Bayesian integration & and H (both assumed random) in the exponential noise
model, in a nonparametric setting allowing for model orddestion. We will show that our more
simple maximum likelihood approach inherently performsleiselection as well by automatically
pruning “irrelevant” dictionary elements. Applied to a shwell structured piano sequence, our
approach is shown to capture the correct number of compsymmtesponding to the expected note
spectra, and outperforms the nonparametric Bayesian apipaf [11].

The paper is organized as follows. Section 2 introduces thiépticative exponential noise model
with the prior distribution for the expansion coefficieptd]). Sections 3 and 4 describe the MJLE
and MMLE approaches, respectively. Section 5 reports tesul synthetical and real audio data.
Section 6 concludes.

2 Model

The generative model assumed in this paper is
Vfn = ﬁfn ~€fn (4)

whereds, = >, wsrhi, andey, is a nonnegative multiplicative noise with exponentiatriis
butioney, ~ exp(—es,). In other words, and under independence assumptions, kiléhtod
function is

p(VIW, H) = an(l/@fn) exp(—vn/Ofn) - (®)

WhenV is a power spectrogram matrix such that, = |z ¢,|*> and{z,} are the complex-valued
short-time Fourier transform (STFT) coefficients of songnal data, wherg typically acts as a
frequency index and acts as a time-frame index, it was shown in [3] that an egeintajenerative
model ofvy,, is

Tfn = Zk Crins  Cfin ~ Ne(0,wrrhgn) (6)



where\V, refers to the circular complex Gaussian distributioim other words, the exponential
multiplicative noise model underlies a generative comgosiodel of the STFT. The complex-
valued matrix{csxn } n, referred to ag'"component, is characterized by a spectral signatyre
amplitude-modulated in time by the frame-dependent coeffid.,,, which accounts for nonsta-
tionarity. In analogy with LDA or DCA, if our data consistetiword counts, withf indexing words
andn indexing documents, then the columnsl&fwould describe topics ang;,, would denote
the number of occurrences of wofdstemming from topid in documenta.

In our settinglV is considered a free deterministic parameter to be estirtatenaximum likeli-
hood. In contrastl/ is treated as a nonnegative random latent variable ovethwircwill integrate.
Itis assigned a GIG prior, such that

hkn ~ g-lz-g(akaﬁka/yk) 5 (7)
with
_ (ﬁ/,y)a/Q a—1 _ 1
GTG(slar 5,7) = gl e T exp— (B + 1) ®)

whereC is a modified Bessel function of the second kind ang and~ are nonnegative scalars.
The GIG distribution unifies the Gamma (> 0, v = 0) and inverse-Gammay(< 0, 8 = 0)
distributions. Its sufficient statistics are 1/x andlog x, and in particular we have

<I> _ K:oﬁ-l(?\/ﬂ’y)\/j <l> _ K:a—l(2\/ﬁ7) é (9)
Ka(2vBy) V B x Ka(2vBy) \ 7
where(z) denotes expectation. Although all derivations and the é@mglntations are done for the
general case, in practice we will only consider the speaisé®f Gamma distribution for simplicity.
In such casej parameter merely acts as a scale parameter, which we fix sosadve the scale
ambiguity between the columns df and the rows off. We will also assume the shape parameters
{«ay } fixed to arbitrary values (typicallyy;, = 1, which corresponds to the exponential distribution).

Given the generative model specified by equations (4) and/é/Mow describe two estimators for
w.

3 Maximum joint likelihood estimation

3.1 Estimator

The joint (penalized) log-likelihood likelihood ¥ and H is defined by

Cor. (W, H) Ellog p(VIW, H) + log p(H) (10)
= -Dis(VIWH) = 3 (1 —ax)loghun + Buhin + e/ hin +ost,  (11)

where Dis(V|W H) is defined as in equation (2) withys(z|y) = x/y — log(x/y) — 1 (Itakura-
Saito divergence) anttst” denotes terms constant witt and H. The subscript JL stands for joint
likelihood, and the estimation % by maximization ofC;., (W, H) will be referred to asnaximum
joint likelihood estimation (MJLE).

3.2 MM algorithm for MJLE

We describe an iterative algorithm which sequentially uesle’” given H andH givenV. Each of
the two steps can be achieved imanorization-maximization (MM) setting [12], where the original
problem is replaced by the iterative optimization of aneat-optimize auxiliary function. We first
describe the update @f, from which the update dfi” will be easily deduced. GiveW, our task
consists in maximizing'(H) = —Dis(V|WH) — L(H), whereL(H) =3, (1 — ax) log hy, +
Bihin + vi/hin. Using Jensen’s inequality to majorize the convex paef(V |W H) (terms in

A complex random variable has distributiafi. (2, A) if and only if its real and imaginary parts are inde-
pendent and distributed a$(R (), A/2) and N (S(u), A/2), respectively.



vrn/0ry) and first order Taylor approximation to majorize its corepart (terms idog 0r,,), as in
[13], the functional

G(H, 1) = = (D, prn/ Pt + Gunhin ) = L(H) + cst, (12)

wherepy, = h3, S Wik pn s Gk = D Whk /Dy Dpn = [WH];,, can be shown to be
a tight lower bound of”(H), i.e., G(H, H) < C(H) andG(H, H) = C(H). lts iterative max-
imization w.r.t H, whereH = H() acts as the current iterate at iteratigrproduces an ascent

algorithm, such tha€'(H+1) > C(H®). The update is easily shown to amount to solving an
order 2 polynomial with a single positive root given by

(ar — 1) + /(o — 1)+ 4(pkn + ) (en + Br)
2(qen + Br)

The update preserves nonnegativity given positive ind@dilon. By exchangeability off” and H
when the data is transposed{ = H”WT), and dropping the penalty term{ = 1, 8, = 0,
~vx = 0), the update of¥V is given by the multiplicative update

~ Zn hknvf”/ﬁQn
Wk = WrkA | Wa (14)

4 Maximum marginal likelihood estimation

which is known from [13].

4.1 Estimator

We define the marginal log-likelihood objective function as
def
Caun (W) Blog [ p(viW, Hyp(i) . (15)

The subscript ML stands for marginal likelihood, and thdneation of W' by maximization of
Cyvr (W) will be referred to agmaximum marginal likelihood estimation (MMLE). Note that in
Bayesian estimation the termarginal likelihood is sometimes used as a synonym for thedel
evidence, which is the likelihood of data given the model, i.e., whallerandom parameters (in-
cludingW) have been marginalized. This is not the case here wiieretreated as a deterministic
parameter and marginal likelihood only refers to the liketid ofi¥/, whereH has been integrated
out. The integral in equation (15) is intractable given owdel. In the next section we resort to a
variational Bayes procedure for the evaluation and maation of Cyy, ().

4.2 Variational algorithm for MMLE

In the following we propose an iterative lower bound evalr@maximization procedure for
approximate maximization of0yy,(W). We will construct a boundB(W, W) such that
Y(W, W), Cur, (W) > B(W, W), whereW acts as the current iterate afid acts as the free pa-
rameter over which the bound is maximized. The maximizasospproximate in that the bound
will only satisfy B(W, W) ~ Cy (W), i.e., is loosely tight in the current upddté, which fails to
ensure ascent of the objective function like in the MM settifi Section 3.2.

We propose to construct the bound from a variational Bayespeetive [14]. The following in-
equality holds for any distribution functiaf{ /)

def
=

Oy (W) > (logp(VW, H)),, + (log p(H)), — (log g(H)), = B(W). (16)

The inequality becomes an equality whgii!) = p(H|[V, W); when the latter is available in close
form, the EM algorithm consists in using ) = p(H|V,W) and maximizeng(W) w.r.t W,
and iterate. The true posterior &f being intractable in our case, we takd{) to be a factorized,



parametric distributiory, (H ), whose parametet is updated so as to t|ghteﬁ"b( ) to C(W).
Like in [11], we choosey (H) to be in the same family as the prior, such that

H) = Hkn GZG(kn, B, Tin) - (17)

The first term ofng(W) essentially involves the expectation -efDs(V|W H) w.r.t to the vari-
ational distributiongg(H). The product? H introduces some coupling of the coefficientsif
(via the sum)_, wsihiyn) Which makes the integration difficult. Following [11] anaindlar to
Section 3.2, we propose to lower bound this term using Jé&naed Taylor’s type inequalities to
majorize the convex and concave parts-dd;s(V|W H). The contributions of the elements &f
become decoupled w.r.t g which allows for evaluation and maximization of the boumHis leads
to

(log p(V[H, W)) E (E ¢f1m < > ) + <log¢fn + —1' E wfk<hlm>q - 1) )
m \ & Wk q Urn
(18)

where{v s, } and{¢r,} are nonnegative free parameters such ¥at¢ s, = 1. We define

By 4, w(W) asBY?(W) but where the expectation of the joint log-likelihood isleged by its lower
bound given rlg?lt side of equation (18). From there, our@algm is a two-step procedure consisting

in 1) computingd, ¢, so as to tighterBy 4 (W) to Cy, (W), and 2) maximizingB; 5 (W)

w.r.t W. The corresponding updates are given next. Note that ei@iuaf the bound only involves
expectations oky,, and1/hy, w.r.tto the GIG distribution, which is readily given by edjaoa (9).

Step 1: Tightening the bound Given current dictionary updai&’, run the following fixed-point
equations.

W /{1/hin
Orim = Zygf/j/ </1/khj>:>q’ Y= Z o <h.7'n>q

_ = Wik Un Yy
A = O, ﬂkn:ﬂk‘FZ#, 'Ykn—'}/k—FZnifn
7 fn

Wrk

Step 2: Optimizing the bound Given the variational distributiof = ¢; from previous step,
updatelV as

2 on Vfn [Zj “7fj<1/hjn>gl} - (1/hn)7 "
S0 [ @ilhindy] (hen)

The VB update has a similar form to the MM update of equatiat) (Lt the contributions off are
replaced by expected values w.r.t the variational distigiou

WfE = ﬁ}fk (19)

4.3 Relation to other works

A variational algorithm using the activation mattX and the latent component$ = {c,} as
hidden data can easily be devised, as sketched in [2]. limgud in the variational distribution also
allows to decouple the contributions of the activation Gorfts w.r.t tok but leads from our expe-
rience to a looser bound, a finding also reported in [11]. lnlly Bayesian setting, Hoffmaet al.

[11] assume Gamma priors for bdthi andH . The model is such that;,, = >, \pwrhi,, Where

Ak acts as a component weight parameter. The number of comisoisguotentially infinite but,

in a nonparametric setting, the prior faf favors a finite number of active components. Posterior
inference of the parameteVE, H, {\;} is achieved in a variational setting similar to Section 4.2,
by maximizing a lower bound op(V'). In contrast to this method, our approach does not require to
specify a prior forl¥/, leads to simple updates fov" that are directly comparable to IS-NMF and
experiments will reveal that our approach embeds modelr@election as well, by automatically
pruning unnecessary columnsidf, without resorting to the nonparametric framework.
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Figure 1. Marginal likelihood”y, (&) and joint likelihood ', (b) versus number of components
K. Cypy, values corresponding to dictionaries estimated’py maximization (c).

5 Experiments

In this section, we study the performances of MJLE and MMLEhuds on both synthetical and
real-world dataset. The prior hyperparameters are fixeddp = 1, v = 0 (exponential distri-
bution) andg, = 1, i.e., hi,, ~ exp(—hi,). We used 5000 algorithm iterations and nonnegative
random initializations in all cases. In order to minimize tidds of getting stuck in local optima, we
adapted the deterministic annealing method proposed inffgt MMLE. Deterministic annealing

is applied by multiplying the entropy term(log ¢(H)) in the lower bound in (16) by /7. The
initial 7(®) is chosen ir(0, 1) and increased through iterations. In our experiments, wegYe= 0.6

and updated it with the rulg(*+!) = min(1, 1.0057®).

5.1 Swimmer dataset

First, we consider the syntheticdhM nmer dataset [16], for which the ground truth of the dictionary
is available. The dataset is composed of 256 images ofi&ize32, representing a swimmer built

of an invariant torso and 4 limbs. Each of the 4 limbs can ben@ of 4 positions and the dataset
is formed of all combinations. Hence, the ground truth ditéiry corresponds to the collection of
individual limb positions. As explained in [16] the torsoda unidentifiable component that can
be paired with any of the limbs, or even split among the limlhsour experiments, we mapped the
values in the dataset onto the rarigel 00] and multiplied with exponential noise, see some samples
in Fig. 2 (a).

We ran the MM and VB algorithms (for MJLE and MMLE, respectieor K = 1...20 and the
joint and marginal log-likelihood end values (after the 80@rations) are displayed in Fig. 1. The
marginal log-likelihood is here approximated by its loweubd, as described in Section 4.2. In
Fig. 1(a) and (b) the respective objective criteia{, andCjr,) maximized by MMLE and MJLE
are shown. The increase ©Of,1, stops aftets’ = 16, whereag”;;, continues to increase ds gets
larger. Fig. 1 (c) displays the corresponding marginalliiia@d values,Cy1,, of the dictionaries
obtained by MJLE in Fig. 1 (b); this figure empirically showst maximizing the joint likelihood
does not necessarily imply maximization of the marginalifkood. These figures display the mean
and standard deviation values obtained from 7 experiments.

The likelihood values increase with the number of composead expected from nested models.
However, the marginal likelihood stagnates affér= 16. Manual inspection reveals that passed
this value ofK, the extra columns dfi” are pruned to zero, leaving the criterion unchanged. Hence,
MMLE appears to embed automatic order selection, similauimatic relevance determination
[17, 18]. The dictionaries learnt from MJLE and MMLE witki = 20 components are shown in
Fig. 2 (b) and (c). As can be seen from Fig. 2 (b), MJLE prodspesious or duplicated compo-
nents. In contrast, the ground truth is well recovered witi INE.

2MATLAB code is available at http://perso.telecom-paristér/~dikmen/nips11/
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Figure 2: Data samples and dictionaries learnt on the swindia@set withi' = 20.

5.2 A piano excerpt

In this section, we consider the piano data used in [3]. Ittigyaaudio sequence recorded in real
conditions, consisting of four notes played all togethehimfirst measure and in all possible pairs in
the subsequent measures. A power spectrogram with analiyglsw of size 46 ms was computed,
leading toF' = 513 frequency bins and&v = 676 time frames. We ran MMLE with' = 20 on the
spectrogram. We reconstructed STFT component estimatestifre factorizatioV’ H, wherell is
the MMLE dictionary estimate anfl = (H > We used the minimum mean square error (MMSE)
estimate given bycf;m = Gthn-Tfn, wheregf;m is the time-frequency Wiener mask defined by
wfkh;m/ Z wjjhm The estimated dictionary and the reconstructed comperieithe time do-
main after inverse STFT are shown in Fig. 3 (a). Out of the 2Z0manents, 12 were assigned to zero
during inference. The remaining 8 are displayed. 3 of thezaomdictionary columns have very
small values, leading to inaudible reconstructions. Thedignificant dictionary vectors correspond
to the frequency templates of the four notes and the tratssiEor comparison, we applied the non-
parametric approach by Hoffma&tal. [11] on the same data with the same hyperparameterd for
The estimated dictionary and the reconstructed comporeatpresented in Fig. 3 (b). 10 out of
20 components had very small weight values. The most signifi® of the remaining components
are presented in the figure. These components do not exactlyspond to individual notes and
transients as they did with MMLE. The fourth note is mainlgnesented in the fifth component, but
partially appears in the first three components as well. hega, the performance of the nonpara-
metric approach depends more on initialization, i.e., iegumore repetitions than MMLE. For the
above results, we used 200 repetitions for the nonparasmagthod and 20 for MMLE (without
annealing, same stopping criterion) and chose the repetitith the highest likelihood.

5.3 Decomposition of a real song

In this last experiment, we decompose the first 40 secon@dOnly Knows by the Beach Boys.
This song was produced in mono and we retrieved a downsanapisibn of it at 22kHz from the
CD release. We computed a power spectrogram with 46 ms amalyslow and ran our VB algo-
rithm with K’ = 50. Fig. 4 displays the original data, and two examples of estahtime-frequency
masks and reconstructed components. The figure also shewartlance of the reconstructed com-
ponents and the evolution of the variational bound alongftens. In this example, 5 components
out of the 50 are completely pruned in the factorization amthérs are inaudible. Such decompo-
sition can be used in various music editing settings, fomg{a for mono to stereo remixing, see,

e.g., [3].
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Figure 3: The estimated dictionary and the reconstructaegpoments by MMLE and the nonpara-
metric approach by Hoffmagt al. with K = 20.
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Figure 4: Decomposition results of a real song. The Wienesksitake values between 0 (white)
and 1 (black). The first example of reconstructed compongpiuces the first chord of the song,
repeated 4 times in the intro. The other component capthessytmbal, which starts with the first
verse of the song.
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6 Conclusions

In this paper we have challenged the standard NMF approachbrinegative dictionary learning,
based on maximum joint likelihood estimation, with a befiesed approach consisting in maximum
marginal likelihood estimation. The proposed algorithredzhon variational inference has compa-
rable computational complexity to standard NMF/MJLE. Oxperiments on synthetical and real
data have brought up a very attractive feature of MMLE, naritelself-ability to discard irrelevant
columns in the dictionary, without resorting to elaboratieesnes such as Bayesian nonparametrics.
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