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Abstract

The object people perceive in an image can depend on itstatiem relative to
the scene it is in (its reference frame). For example, theg@naf the symbols
x and+ differ by a 45 degree rotation. Although real scenes haveiphellim-
ages and reference frames, psychologists have focusecenasswith only one
reference frame. We propose an ideal observer model basedrparametric
Bayesian statistics for inferring the number of refereneenis in a scene and
their parameters. When an ambiguous image could be assigiwd tonflicting
reference frames, the model predicts two factors shoulddntie the reference
frame inferred for the image: The image should be more likelghare the refer-
ence frame of the closer objeqréximity) and it should be more likely to share
the reference frame containing the most objeatigiment). We confirm people
use both cues using a novel methodology that allows for essting of human
reference frame inference.

1 Introduction

When are the objects in two images the saim&lhough people recognize and categorize objects
successfully and effortlessly, object recognition in maeHearning is an incredibly difficult prob-
lem and people’s success is a puzzle to cognitive scienfistsolve this problem, object recognition
techniques typically generate a set of features using afiredl procedure (e.g., SIFT descriptors
[1] or textons [2]) or learn features (e.g., deep belief rgks [3]) from the images. The general
goal of these methods is to extract features from imagesatieatiseful for identifying the objects
that generated the images after whatever transformatmngi@d while producing them (e.g., view-
point changes). This is a sensible strategy given that pagplcally perceive the same object even
when it is transformed in its image (e.g., translations).wieeer, not all transformations should
be ignored: The perceived identity of some objects dependb@® orientation of its features with
respect to the scene it is in (e.,vs. + differ only in orientation), but for other objects it does

LIn this paper, we use the following terminology for scene, image, andbijae entire visual input of an
observer is a scene. A scene contains a set of images. An image isod fher visual input that is generated
by a single object, which is ambiguous as two or more objects could getieeagame image. An object is the
item in the world that generates an image in the visual input.



not. Developing proper object recognition and fully undensiing how people do it depends on
explaining how people determine the orientation of objagtk respect to the scene they are in.

The importance of orientation for object recognition leadgo the following question: If two ob-
jects project to the same image under different viewing @@ (e.g.,+ and x after 45 degree
rotations), how do people infer which object is in the imada®sychology, there are two main
theories for how people solve this problem: theariant feature hypothesis [4], which is essentially
the strategy taken by current object recognition techriquse features that preserve object identity
over the possible transformations that generate imagdseodltject), and theeference frame hy-
pothesis, which posits that objects are embedded in caatalaxes [5]. The coordinate axes set the
orientation and scale of the objects, and thuand x can be identified as different objects. Though
they may produce the same image, they will have differentdinate axes.

In some situations the orientation of an image’s referemamé is simply the orientation of the
retina; however, this is not the case when we rotate our h@sur retinal image rotates) or
look at a rotated object (e.g., a person lying on a bench orcardent rotated on a desk). Thus,
the reference frame of an image is ambiguous without additimformation. However, if there
is another object in the scene whose orientation is unarobgy(like a 5), then the orientation of
the ambiguous image can be inferfediVe demonstrate that people use the orientation of other
images in the scene to determine the orientation of an amabgimage by asking participants to
solve arithmetic problems, where the operator image is gnthis and the two numbers flanking the
operator are either oriented upright or rotated 45 degrBas solution people adopt is indicative of
the reference frame they inferred for the operator (mudigiion implies an upright reference frame
and addition implies a diagonal reference frame). This isv@hexperimental method that allows
us to explore reference frame inference in a wide range degts

In real life, we typically view scenes with multiple refenframes. For example, some books
on a bookshelf might be upright, other books could be tiltedjdnally (for support), while other
books might lie flat. Yet there has been little work invediigg how people infer the number of
reference frames, their orientations, and which imagesnigeio each reference frame. To solve this
problem, we note that each image in a scene belongs to a sefglence frame, and thus reference
frames form a partition of the images in a scene (where eamtklh the partition corresponds to a
reference frame). Using a standard nonparametric Bayesiatel for partitions, we formulate an
ideal observer model to infer multiple reference frames thieit parameters. The model predicts
that people should be sensitive to two cues when inferriegréfierence frames of a scene: the
proximity of the ambiguous image to two unambiguous flanking imagesiiflicting orientations,
and the difference in the number of objealigyned in the competing reference frames. We confirm
people are sensitive to both cues using the novel methodided@bove.

The summary of the article is as follows. First, Section 2arizes relevant psychological research
on how orientation affects the objects perceived in amhigumages. Next, Section 3 develops a
novel method for online testing of the reference frame peapler for an image and establishes
its efficacy. Section 4 presents an ideal observer modeldi@rence frame inference in scenes
with multiple reference frames. The model predicts thataimdiguous image’proximity to other
reference frames should affect the inferred referencedramnd Section 5 confirms that people act in
accordance with this prediction in a behavioral experim&he model also predicts that the number
of aligned objects in a reference frame should affect the referencediaferred for an ambiguous
image. Section 6 confirms this prediction in a behaviorakeixpent. Section 7 concludes the paper
and highlights some directions for future research.

2 Orientation in psychological theories of object represetation

Though the perceived object of some images does not depeitslanentation (like a 5), there are
many examples where the perceived object does depend aieitsation [7, 8], includingt vs. x

or a square vs. a diamond, and other effects of orientatiabg@att recognition [9, 10]. This has led
psychologists to believe that people represent objectsimwi reference frame (a set of coordinate
axes)® Figure 1 (a) shows that reference frames predict the imagg interpreted as a when

2\We view the ambiguity of a reference frame as essentially the same asethgtbtof the intrinsic axes [6].
*Though coordinate axes have other properties (e.g., scale), we docorientation in this article.
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Figure 1: Reference frames. (a) The ambiguity of thémage can be resolved using reference
frames: a+ with horizontal orientation (solid axes) orsarotated 45 degrees (dashed axes). (b)
Other images are unambiguous, like a 5. (c) The referenoeefrd ambiguous objects is influenced
by objects with unambiguous reference frames. (d) The gofugbjects is seen as either atl or

all x, but not somet- and somex. This establishes one reference frame per group.

the coordinate axes are aligned with the document’s axesasndwhen the coordinate axes are
diagonal to the document’s axes. For objects that are ooty invariant, there is only one object
that generates the observed image and so it is identifialalpyirorientation (see Figure 1 (b)). The
dependence of object perception on orientation is a welbdished norm and has been demonstrated
with novel and familiar 2-D objects, faces, handwriting98,and 3-D objects [10, 11].

Central to the reference frame hypothesis is the abilityunfprceptual system to infer a reference
frame for a given image. As more than one reference frame reagohsistent with an observed
image, psychologists have explored how people infer theogypiate reference frame for an image.
Though reference frame inference is strongly influencecdhbytdp-down axis of the retinal image
and by the axis of gravity (given by our proprioceptive andtimilar senses) [8], the scene itself
can influence the inferred reference frame. Objects grotgggether in the world tend to be affected
by the same transformation when they generate images {leegtext on a poster as the poster is
rotated), and so it is sensible that the inferred refererazad for an ambiguous image is influenced
by the orientations of the images surrounding it. Figures) ad (d) are phenomenological demon-
strations of how thalignment of the orientations of other objects in a scene can bias fleered
reference frame for an image whose reference frame is amigiand there is strong corroborating
empirical evidence for this principle [12, 13})Figure 1 (c) is biased towards being interpreted as
x based on the surrounding context and the images in Figurgarédnterpreted as either al or

all tilted x, but it is difficult to interpret some as and others as tilte¢ simultaneously [14]. Thus,
there is one reference frame shared by all the objects inwgpgro

Although there is a wealth of research into reference frarfexénce for scenes containing a single
reference frame, to the best of our knowledge, there hasawst Any research into how people de-
termine the reference frame of ambiguously oriented imades there is more than one reference
frame in the scene (and both are consistent with the imadg@sfore exploring what cues influ-
ence human reference frame inference in scenes with nautgfiérence frames, we develop a novel
method for testing human reference frame inference.

3 Testing reference frame inference using arithmetic

To test how different factors influence the reference fras@pfe infer for an image, we ask people
to solve an arithmetic problem without specifying the ajppiate operation. If people view and
their response is the multiplication answer, then theienaice frame foix is aligned with the
horizontal and vertical axes of the page. Alternativelpgbple view the same, but their response
is the addition answer, then their reference frame<as aligned with the axes diagonal to the page
(and thus, relative to its own reference frame, it is treated).> We use this new method instead of
previous techniques (e.g., explicitly asking the imagesmiation and recording the frequency each
orientation is chosen that is either compatible or configtio the tested hypothesis [15]) due to its
ability to be used in a wide range of contexts and to dematestihe robust importance of reference

“We use slightly different terminology than previous work has done died t@this principle as alignment
rather then symmetry to avoid the ambiguity in the word symmetry (which sstnyrwve are referring to).

SAlthough we uset and x as the ambiguous images, this method works with any ambiguous images by
teaching the participant to use addition in one orientation of the image and maliipfién the other.
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Figure 2: Effect of the orientations of other objects in tlaens reference frame. (a) 5s aligned
with axes implies that the operator s (b) 5s aligned with diagonal implies the operatortis
at a diagonal orientation. (c) Frequency of answers to (@rgby participants. Most participants
respond with 25, the solution to the product of 5 and 5, menttieir reference frame is aligned
with the axes of the page. (d) Frequency of answers to (bndiyeparticipants. Most participants
respond with 10, meaning their reference frame is alignel thie diagonals of the page.

frame inference on a seemingly unrelated cognitive behdsmlving an arithmetic problem). We
confirm its validity by reproducing a previously found effecthe influence of orientation on other
images in the scene [12].

When the reference frame for an image is ambiguous, one fa@binfluences the inferred refer-
ence frame is the orientation of other images it is groupet,veispecially when those images are
identifiable in any orientation. Thus, if we ask people toveahn arithmetic problem, where the
operatorx is paired with the numbers 5 aligned with the top-down axebefpage (Figure 2 (a)),
they should respond 25, the result of multiplication. Altgively, if people solve the same problem
except the numbers 5 are aligned diagonally, they shoudd the diagonal axes to be the reference
frame and respond 10, the result of addition (Figure 2 (b)).

To test this method, we recruited 20 participants onlinep whswered one arithmetic problem in
exchange for a small monetary reward. The participants weumterbalanced over the axis or
diagonally oriented conditions (Figures 2 (a) and (b) retipely) and all participants gave either
the addition (10) or multiplication (25) solution. By chang the orientation of the numbers, the
solutions to the arithmetic problems given by participant$igures 2 (a) and (b) are different
despite having identical numbers and the identical opematage. Figures 2 (c) and (d) show that
the responses of two groups of participants who answeredrittemetic problem in (a) and (b)
differed as predictedy?(1) = 5.208,p < 0.05, using Yates’ chi-square correction). Thus, asking
participants to solve arithmetic problems is an effectiwshnod for testing reference frame inference
and perceived orientations can influence higher level dimgmi

4 Modeling reference frame inference

Before describing our model of reference frame inferenaé wiultiple reference frames, we first
present a probabilistic model for scenes of multiple imagiés only a single reference frame.

4.1 Reference frame inference for scenes with one referenframe

We assume that a vocabulary of possible objects is knowndabfetime of sizel” and that there
are R possible rotations. Each scene (e.g., Figure 2 (a) is omepa®nsists of a set of images
(e.g., 5,x, and 5 are the images of Figure 2 (a)). For each imagea scene, the model is given
its visual propertiey; and its spatial locatior; = (x;1, x;2) The visual properties of the image

are generated by an unknown objegctotated byr, the orientation of the scene’s reference frame.
A V x R binary image-object alignment matrik() encodes the object-rotation pairs consistent
with the observed imagg; such thatA () (v,r) = 1 if the image of object rotatedr degrees

is consistent withy;. The model assumes that the spatial locations of the images@dependent
identically distributed draws from a Gaussian distribntiath shared parameters the center point
for the reference frame, andl, the spread of objects around its center point. The unobderv
objects and the orientation of the reference frarage drawn from independent discrete distributions



with parameterg and#, the prior over objects and reference frame orientatiaspectively. The
following generative model defines our statistical model:

7|0 ~ Discrete(6) V| u Discrete(¢)
X;|p, B ~ Gaussian (p, X) P(y;|vi,r) = AD (v;,7)
If the model assumes there are three types of objects éd x) and two possible rotations (0 and
45 degrees), the model captures the sensitivity of paaitgpin the demonstration (Figure 2). In
Figure 2 (a), the 5s are oriented at 0 degre®e&, ) is only non-zero when = 0 because no other
object can produce an image consistent with the observegdroathe 5.» = 0 implies that the
operator isx, which is consistent with participant responses (Figur®@ {Vhen the 5s are oriented

at 45 degrees (Figure 2 (b)A (5, r) is only non-zero whem = 45 for the same reason as before.
r = 45 implies that the operator is, which is consistent with participant responses (Figuré)® (

4.2 Extending the model for scenes with multiple referencer&dmes

Although the model defined in the previous section succaeigerring the reference frame of an

ambiguous image using other images it is grouped with, ihoahandle scenes containing multiple
reference frames, such as the scenes in Figure 3. We exinubiifel by partitioning the images of

a scene into reference frames, where each image of the selemgb to exactly one reference frame
and a reference frame is a block of the partition. From thisgective, inferring multiple reference

frames for a scene of images is equivalent to partitioniegsttene or clustering the images.

With the insight that grouping images into reference fraiadi&e finding a partition of a scene, we
can extend our model to select the reference frames of a é@éhen unknown number of reference
frames). First, we generate a partition of the images indbae from the Chinese restaurant process
(CRP) [16] with parametet:, an exchangeable distribution over partitions. The CRPefindd
through the following sequential construction:

Nk k<K
Plc; =kleq, ... cioq) =<4 oti-l -
e =Henoe) = { T KR

where K is the current number of reference frames andis the number of objects assigned to
reference framé. ¢; denotes the reference frame that objeistassigned to and if;, = K + 1, it
is assigned a new reference frame containing none of théopieabjects andC increments by one
(to initialize, the first object starts its own referencenimandk” = 1). This gives us an assignment
vectorc, wherec; = j denotes reference framjecontains image. Each block in the partition
(reference frame) is associated with a rotation; and is embedded in the spatial layout of the
scene with a center positiqry and spread:; (each of which is generated from a Gaussian-Inverse
Wishart distribution with shared parameters). Thus, wesltfined the following generative model
for a set of images in a scene:

iid

cla ~ CRP(a) i, Bl o, Bo, ko, vo ~ GIW (o, 3o, ko, o)
;|0 #d Discrete(6) V| b Discrete(¢)
Xi|Ci, phe;» Ve, ~ Gaussian (pe,, X, ) P(yi|vi,re; ) = A (v, ;)

whereGIW signifies the Gaussian-Inverse-Wishart distribution, andy, >0, ko, 1o, 0, and¢ are
hyperparameters of our model.

We use Gibbs sampling for inference [17], which gives us theter assignments for each image
and the updated parametefs = (u;,X,,7;) for each clusterj. We begin by assigning each
image to its own reference frame and then iterating. For edderved image, we resamplg
from the set of existing clusters amd = 2 newly drawn clusters. After alt; values have been
resampled, we discard any empty clusters and update thepsaes of the remaining clusters by
drawing them from their posterior distribution given thgemits assigned to that reference frame
p(i|{xi,yi : ¢i = j}), where{x;,y; : ¢; = j} is the set of images and their locations in reference
framej.

4.3 Predictions for human reference frame inference

What factors influence the reference frame assigned to argamis image according to our ideal
observer model? Two factors it predicts should influencertiege’s inferred reference frame are
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Figure 3: Trials from Experiment 1 showing the possible poss of the operators for the main

factor of the experiment. Other factors randomized oveldrare the numbers in the problem
(always single digits), which of the two numbers was rotatbd diagonal that the numbers and
operator are aligned on (positive diagonal shown in the éigout numbers and operator aligned on
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Figure 4: Proximity effects: (a) Human results and (b) Ma@slults. The closer the operator is to
the left number, the more likely it is to take the left numbeatientation.

proximity or how close the image is to unambiguous images (as imaghke same reference frame
are coupled in spatial location) aatignment or the difference in the number of images assigned
to each reference frame. The general paradigm we use tdéeptedictions is to have the or x
operator flanked by a number with different orientations acheside (see examples in Figure 3).
It is clear that the two numbers should have their own refezdrame, but it is ambiguous which
reference frame the operator should be assigned to. We cerpa each of these factors influences
the reference frames inferred in the scene by people and odelin two behavioral experiments.

5 Experiment 1. Proximity effects on reference frame infererce

When the reference frame for an image is ambiguous and therewar conflicting neighboring
reference frames, our model predicts thaiximity or the distance of the ambiguous image to the
two conflicting reference frames should affect the refeedrmme adopted by the ambiguous image.
We explore this question using the method presented abdwerevparticipants are asked to solve
an arithmetic problem where the operator is ambiguous kEtweor x and the two numbers have
conflicting reference frames (orientations). This allow$aideduce the reference frame inferred for
the operator image from the answer given by participants.m&eipulate proximity by changing
the location of the operator such that it is closer to one eftéto numbers as shown in Figure 3.

5.1 Methods

A total of 134 participants completed the experiment online through Ammavlechanical Turk in
exchange for $0.20 USD. Four participants did not give asmtsolution to the arithmetic problem
(neither the addition nor multiplication solution) leagih30 participants for analysis. Participants
were asked to maximize their window before answering thirmetic problem. All factors were
manipulated between subjects as preliminary testing detraied a strong effect of trial order on
the selected reference frame (probably because refereamoed rarely change in the world).



The primary factor of interest of the experiment was the fpmsiof the operator scored from -2
(far to the left) to 2 (far to the right), which was counteidoated over participants (without the
0 position). The problem was viewed through a simulatedtapei(to minimize the effect of the

monitor’s reference frame). See Figure 3 for example twéth the operator in each position.
There were several other factors that were randomized avécipants: the numbers in the problem
(randomly chosen single digit numbers), which number wested (left or right), the diagonal that
the numbers and operator were aligned on (positive diag@asashown in Figure 3, or negative
diagonal), and the rotation of the operaterdr x).

5.2 Results and Discussion

Figure 4 (a) shows that participants are more likely to itfierorientation of the left number for the
operator the closer itis to the left number. The results condiur hypothesis: the closer the operator
is to an image with an unambiguous reference frame, the nialy barticipants are to infer that
reference frame for the operator?(1) = 3.99,p < 0.05 for -2 vs. 2). A probit regression analysis
corroborates this result as the regression coefficiengisfgantly different from zeroy < 0.05).

The model results were generated using Gibbs sampling éasopsly described) and shown in
Figure 4 (b). For each trial, we ran the sampler 506rburn-in iterations, recorde@0 samples,
and then thinned the samples by selecting evesamples. This lefi50 samples that formed
our estimate for the proportion of times the operator groupéh the left reference frame. The
parameters were initialized to: = 0.001, 1o = [264.7,261.94], 3y = 10001 (scenes arg50 x 550
pixels with the bottom-left corner as origin), whdres the identity matrixk, = 0.2, andyy = 110.
The discrete distributions encoding the priors on objent$ arientationsf and ¢, were uniform
over all V' and R possibilities. The model and human results clearly exfthst same qualitative
behavior: As the distance between the operator and thedeiber decreased, the probability the
operator took the orientation of the left number increased.

6 Experiment 2: Alignment effects on reference frame inferene

Our model also predicts that the difference in the numbemafmbiguous images assigned to the
conflicting reference frames should affect the refererm@é& adopted by the operator image. In this
experiment, we test the prediction using the same method@sabut manipulate the number of
extra oriented unambiguous objects in each of the compegfiegence frames (see Figure 5 (a)).

6.1 Methods

A total of 80 people participated online through Amazon Mechanical Tarkxchange for $0.20
USD. There werd?2 participants who gave an incorrect answer, leadi®igarticipants for analysis.
The instructions and design were identical to the previoygeement, except that there were two
extra factors manipulating the context of the left and riginnber (5 on the left and 1 on the right
or vice versa) and there were only two operator positionai?2). Figure 5 (a) illustrates example
trials of the context manipulations for the operator in fiosi-2.

6.2 Results and Discussion

Figure 5 (b) shows that participants were more likely toiitife operator’s orientation to be the ori-
entation of whichever side had more objects and it was closeeplicating the effect of Experiment

1 (x%(1) = 12.8728, p < 0.0005 ). Model results were generated using the same procedurngaand
rameter values as Experiment 1 (except= 10 to account for the increased number of objects) and
Figure 5 (c) shows its similarity to participant results.

7 Conclusions and future directions

In this paper, we introduced the first study of how peopleritifie reference frame of images in
scenes with multiple reference frames. We presented anditnplethod for testing reference frame
inference, an ideal observer model that predicts peoplaldhme sensitive to two scene cues, and



() (b) ! Aliganlent effects on participant resplonses
= ——5LIR
<08 -0- IL5R] {
=
2
go 0.6

SL1R 204
£ 0.
5
A 02
0 . .
-2 Operator Position 2
{ Alignment effects on model responses
& ——5LIR
<08 -0- IL5R] {
=
g
206 a.
5
1L5R =04
X £02
0

-2 Operator Position
Figure 5: Alignment effects. The operator is more likelyake the orientation of the side with more

objects. 5L1R denotes five objects in the left reference éranmd one object in the right, and 1L5R
indicates the opposite arrangement. (a) Example stiniw)lkHHgman results, and (c) Model results.

behavioral evidence supporting its predictions. Becals@bjects people perceive depend on the
orientation of their images in the scene, these resultsdugpour understanding of how the config-
uration of objects in scenes affects object perception.

We plan to extend our model to capture other cues identifiegdogeptual psychologists. A first
step is to include the bias towards using the up-down axig®@friput image [8] by using a non-
uniform distribution over rotations (estimatir). We can capture thelongation cue (that the
orientation of the spread of images in a scene biases thetatien of the reference frame of the
images in the scene [5]) by coupling the covariance maixgnd rotation«) of a reference frame.
Currently, our model assumes the positions of images inesigete frame are Gaussian distributed;
however, people have strong expectations about the amargef images in a scene [18]. We plan
to compare people’s bias to a sophisticated scene seginentaddel [19]. We are also interested
in cues that depend on the structure of the images or thetati@m of the agent in the world, like
axes of symmetry [5] or gravitational axes [8].

Another direction for future work is to address an assunmpiicthe model: How do people learn the
set of objects and whether or not those objects are orientatvariant? A potential solution is to
combine our model with previous work that presented a napatric Bayesian model for learning
features and the transformations they are allowed to und@@]. Hopefully, incorporating our
model into this feature learning method will yield bettefeimed features and, in turn, will help
create better feature generation and object recognit@mtques by providing better understanding
of how people perceive objects from ambiguous image data.

Finally, we plan to explore how the presented principlesesttamore realistic scenes with objects
more complex thant and x and more orientations. Our paradigm provides a principtatisg
point for investigating how reference frames are identifiesicenes with multiple reference frames.
It is easily extended to more complex scenes by associatffegaiht orientations (or rotations in
depth) of an ambiguous image with different arithmetic apens. Our hope is that this leads to a
better understanding of object identification and refeeen@me identification.
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