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Abstract

The object people perceive in an image can depend on its orientation relative to
the scene it is in (its reference frame). For example, the images of the symbols
× and+ differ by a 45 degree rotation. Although real scenes have multiple im-
ages and reference frames, psychologists have focused on scenes with only one
reference frame. We propose an ideal observer model based onnonparametric
Bayesian statistics for inferring the number of reference frames in a scene and
their parameters. When an ambiguous image could be assigned to two conflicting
reference frames, the model predicts two factors should influence the reference
frame inferred for the image: The image should be more likelyto share the refer-
ence frame of the closer object (proximity) and it should be more likely to share
the reference frame containing the most objects (alignment). We confirm people
use both cues using a novel methodology that allows for easy testing of human
reference frame inference.

1 Introduction

When are the objects in two images the same?1 Although people recognize and categorize objects
successfully and effortlessly, object recognition in machine learning is an incredibly difficult prob-
lem and people’s success is a puzzle to cognitive scientists. To solve this problem, object recognition
techniques typically generate a set of features using a predefined procedure (e.g., SIFT descriptors
[1] or textons [2]) or learn features (e.g., deep belief networks [3]) from the images. The general
goal of these methods is to extract features from images thatare useful for identifying the objects
that generated the images after whatever transformations occurred while producing them (e.g., view-
point changes). This is a sensible strategy given that people typically perceive the same object even
when it is transformed in its image (e.g., translations). However, not all transformations should
be ignored: The perceived identity of some objects depends on the orientation of its features with
respect to the scene it is in (e.g.,× vs. + differ only in orientation), but for other objects it does

1In this paper, we use the following terminology for scene, image, and object. The entire visual input of an
observer is a scene. A scene contains a set of images. An image is a part of the visual input that is generated
by a single object, which is ambiguous as two or more objects could generatethe same image. An object is the
item in the world that generates an image in the visual input.
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not. Developing proper object recognition and fully understanding how people do it depends on
explaining how people determine the orientation of objectswith respect to the scene they are in.

The importance of orientation for object recognition leadsus to the following question: If two ob-
jects project to the same image under different viewing conditions (e.g.,+ and× after 45 degree
rotations), how do people infer which object is in the image?In psychology, there are two main
theories for how people solve this problem: theinvariant feature hypothesis [4], which is essentially
the strategy taken by current object recognition techniques (use features that preserve object identity
over the possible transformations that generate images of the object), and thereference frame hy-
pothesis, which posits that objects are embedded in coordinate axes [5]. The coordinate axes set the
orientation and scale of the objects, and thus+ and× can be identified as different objects. Though
they may produce the same image, they will have different coordinate axes.

In some situations the orientation of an image’s reference frame is simply the orientation of the
retina; however, this is not the case when we rotate our heads(as our retinal image rotates) or
look at a rotated object (e.g., a person lying on a bench or a document rotated on a desk). Thus,
the reference frame of an image is ambiguous without additional information. However, if there
is another object in the scene whose orientation is unambiguous (like a 5), then the orientation of
the ambiguous image can be inferred.2 We demonstrate that people use the orientation of other
images in the scene to determine the orientation of an ambiguous image by asking participants to
solve arithmetic problems, where the operator image is ambiguous and the two numbers flanking the
operator are either oriented upright or rotated 45 degrees.The solution people adopt is indicative of
the reference frame they inferred for the operator (multiplication implies an upright reference frame
and addition implies a diagonal reference frame). This is a novel experimental method that allows
us to explore reference frame inference in a wide range of contexts.

In real life, we typically view scenes with multiple reference frames. For example, some books
on a bookshelf might be upright, other books could be tilted diagonally (for support), while other
books might lie flat. Yet there has been little work investigating how people infer the number of
reference frames, their orientations, and which images belong to each reference frame. To solve this
problem, we note that each image in a scene belongs to a singlereference frame, and thus reference
frames form a partition of the images in a scene (where each block in the partition corresponds to a
reference frame). Using a standard nonparametric Bayesianmodel for partitions, we formulate an
ideal observer model to infer multiple reference frames andtheir parameters. The model predicts
that people should be sensitive to two cues when inferring the reference frames of a scene: the
proximity of the ambiguous image to two unambiguous flanking images in conflicting orientations,
and the difference in the number of objectsaligned in the competing reference frames. We confirm
people are sensitive to both cues using the novel method described above.

The summary of the article is as follows. First, Section 2 summarizes relevant psychological research
on how orientation affects the objects perceived in ambiguous images. Next, Section 3 develops a
novel method for online testing of the reference frame people infer for an image and establishes
its efficacy. Section 4 presents an ideal observer model for reference frame inference in scenes
with multiple reference frames. The model predicts that theambiguous image’sproximity to other
reference frames should affect the inferred reference frame and Section 5 confirms that people act in
accordance with this prediction in a behavioral experiment. The model also predicts that the number
of aligned objects in a reference frame should affect the reference frame inferred for an ambiguous
image. Section 6 confirms this prediction in a behavioral experiment. Section 7 concludes the paper
and highlights some directions for future research.

2 Orientation in psychological theories of object representation

Though the perceived object of some images does not depend onits orientation (like a 5), there are
many examples where the perceived object does depend on its orientation [7, 8], including+ vs.×
or a square vs. a diamond, and other effects of orientation onobject recognition [9, 10]. This has led
psychologists to believe that people represent objects within a reference frame (a set of coordinate
axes).3 Figure 1 (a) shows that reference frames predict the image+ is interpreted as a+ when

2We view the ambiguity of a reference frame as essentially the same as the strength of the intrinsic axes [6].
3Though coordinate axes have other properties (e.g., scale), we focus on orientation in this article.
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Figure 1: Reference frames. (a) The ambiguity of the+ image can be resolved using reference
frames: a+ with horizontal orientation (solid axes) or a× rotated 45 degrees (dashed axes). (b)
Other images are unambiguous, like a 5. (c) The reference frame of ambiguous objects is influenced
by objects with unambiguous reference frames. (d) The groupof objects is seen as either all+ or
all ×, but not some+ and some×. This establishes one reference frame per group.

the coordinate axes are aligned with the document’s axes andas× when the coordinate axes are
diagonal to the document’s axes. For objects that are rotationally invariant, there is only one object
that generates the observed image and so it is identifiable inany orientation (see Figure 1 (b)). The
dependence of object perception on orientation is a well established norm and has been demonstrated
with novel and familiar 2-D objects, faces, handwriting [8,9], and 3-D objects [10, 11].

Central to the reference frame hypothesis is the ability of our perceptual system to infer a reference
frame for a given image. As more than one reference frame may be consistent with an observed
image, psychologists have explored how people infer the appropriate reference frame for an image.
Though reference frame inference is strongly influenced by the top-down axis of the retinal image
and by the axis of gravity (given by our proprioceptive and vestibular senses) [8], the scene itself
can influence the inferred reference frame. Objects groupedtogether in the world tend to be affected
by the same transformation when they generate images (e.g.,the text on a poster as the poster is
rotated), and so it is sensible that the inferred reference frame for an ambiguous image is influenced
by the orientations of the images surrounding it. Figures 1 (c) and (d) are phenomenological demon-
strations of how thealignment of the orientations of other objects in a scene can bias the inferred
reference frame for an image whose reference frame is ambiguous (and there is strong corroborating
empirical evidence for this principle [12, 13]).4 Figure 1 (c) is biased towards being interpreted as
× based on the surrounding context and the images in Figure 1 (d) are interpreted as either all+ or
all tilted×, but it is difficult to interpret some as+ and others as tilted× simultaneously [14]. Thus,
there is one reference frame shared by all the objects in a group.

Although there is a wealth of research into reference frame inference for scenes containing a single
reference frame, to the best of our knowledge, there has not been any research into how people de-
termine the reference frame of ambiguously oriented imageswhen there is more than one reference
frame in the scene (and both are consistent with the images).Before exploring what cues influ-
ence human reference frame inference in scenes with multiple reference frames, we develop a novel
method for testing human reference frame inference.

3 Testing reference frame inference using arithmetic

To test how different factors influence the reference frame people infer for an image, we ask people
to solve an arithmetic problem without specifying the appropriate operation. If people view× and
their response is the multiplication answer, then their reference frame for× is aligned with the
horizontal and vertical axes of the page. Alternatively, ifpeople view the same×, but their response
is the addition answer, then their reference frame for× is aligned with the axes diagonal to the page
(and thus, relative to its own reference frame, it is treatedas+).5 We use this new method instead of
previous techniques (e.g., explicitly asking the image’s orientation and recording the frequency each
orientation is chosen that is either compatible or conflicting to the tested hypothesis [15]) due to its
ability to be used in a wide range of contexts and to demonstrate the robust importance of reference

4We use slightly different terminology than previous work has done and refer to this principle as alignment
rather then symmetry to avoid the ambiguity in the word symmetry (which symmetry we are referring to).

5Although we use+ and× as the ambiguous images, this method works with any ambiguous images by
teaching the participant to use addition in one orientation of the image and multiplication in the other.
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Figure 2: Effect of the orientations of other objects in the same reference frame. (a) 5s aligned
with axes implies that the operator is×. (b) 5s aligned with diagonal implies the operator is+
at a diagonal orientation. (c) Frequency of answers to (a) given by participants. Most participants
respond with 25, the solution to the product of 5 and 5, meaning their reference frame is aligned
with the axes of the page. (d) Frequency of answers to (b) given by participants. Most participants
respond with 10, meaning their reference frame is aligned with the diagonals of the page.

frame inference on a seemingly unrelated cognitive behavior (solving an arithmetic problem). We
confirm its validity by reproducing a previously found effect – the influence of orientation on other
images in the scene [12].

When the reference frame for an image is ambiguous, one factorthat influences the inferred refer-
ence frame is the orientation of other images it is grouped with, especially when those images are
identifiable in any orientation. Thus, if we ask people to solve an arithmetic problem, where the
operator× is paired with the numbers 5 aligned with the top-down axes ofthe page (Figure 2 (a)),
they should respond 25, the result of multiplication. Alternatively, if people solve the same problem
except the numbers 5 are aligned diagonally, they should infer the diagonal axes to be the reference
frame and respond 10, the result of addition (Figure 2 (b)).

To test this method, we recruited 20 participants online, who answered one arithmetic problem in
exchange for a small monetary reward. The participants werecounterbalanced over the axis or
diagonally oriented conditions (Figures 2 (a) and (b) respectively) and all participants gave either
the addition (10) or multiplication (25) solution. By changing the orientation of the numbers, the
solutions to the arithmetic problems given by participantsin Figures 2 (a) and (b) are different
despite having identical numbers and the identical operator image. Figures 2 (c) and (d) show that
the responses of two groups of participants who answered thearithmetic problem in (a) and (b)
differed as predicted (χ2(1) = 5.208, p < 0.05, using Yates’ chi-square correction). Thus, asking
participants to solve arithmetic problems is an effective method for testing reference frame inference
and perceived orientations can influence higher level cognition.

4 Modeling reference frame inference

Before describing our model of reference frame inference with multiple reference frames, we first
present a probabilistic model for scenes of multiple imageswith only a single reference frame.

4.1 Reference frame inference for scenes with one referenceframe

We assume that a vocabulary of possible objects is known ahead of time of sizeV and that there
areR possible rotations. Each scene (e.g., Figure 2 (a) is one scene) consists of a set of images
(e.g., 5,×, and 5 are the images of Figure 2 (a)). For each imagei in a scene, the model is given
its visual propertiesyi and its spatial locationxi = (xi1, xi2) The visual properties of the imageyi

are generated by an unknown objectvi rotated byr, the orientation of the scene’s reference frame.
A V × R binary image-object alignment matrixA(i) encodes the object-rotation pairs consistent
with the observed imageyi such thatA(i)(v, r) = 1 if the image of objectv rotatedr degrees
is consistent withyi. The model assumes that the spatial locations of the images are independent
identically distributed draws from a Gaussian distribution with shared parametersµ, the center point
for the reference frame, andΣ, the spread of objects around its center point. The unobserved
objects and the orientation of the reference framer are drawn from independent discrete distributions
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with parametersφ andθ, the prior over objects and reference frame orientations, respectively. The
following generative model defines our statistical model:

r|θ ∼ Discrete(θ) vi|φ
iid
∼ Discrete(φ)

xi|µ,Σ ∼ Gaussian (µ,Σ) P (yi|vi, r) = A(i)(vi, r)

If the model assumes there are three types of objects (5,+ and×) and two possible rotations (0 and
45 degrees), the model captures the sensitivity of participants in the demonstration (Figure 2). In
Figure 2 (a), the 5s are oriented at 0 degrees.A(5, r) is only non-zero whenr = 0 because no other
object can produce an image consistent with the observed image of the 5.r = 0 implies that the
operator is×, which is consistent with participant responses (Figure 2 (c)). When the 5s are oriented
at 45 degrees (Figure 2 (b)),A(5, r) is only non-zero whenr = 45 for the same reason as before.
r = 45 implies that the operator is+, which is consistent with participant responses (Figure 2 (d)).

4.2 Extending the model for scenes with multiple reference frames

Although the model defined in the previous section succeeds in inferring the reference frame of an
ambiguous image using other images it is grouped with, it cannot handle scenes containing multiple
reference frames, such as the scenes in Figure 3. We extend the model by partitioning the images of
a scene into reference frames, where each image of the scene belongs to exactly one reference frame
and a reference frame is a block of the partition. From this perspective, inferring multiple reference
frames for a scene of images is equivalent to partitioning the scene or clustering the images.

With the insight that grouping images into reference framesis like finding a partition of a scene, we
can extend our model to select the reference frames of a scene(with an unknown number of reference
frames). First, we generate a partition of the images in the scene from the Chinese restaurant process
(CRP) [16] with parameterα, an exchangeable distribution over partitions. The CRP is defined
through the following sequential construction:

P (ci = k|c1, . . . , ci−1) =

{

nk

α+i−1 k ≤ K
α

α+i−1 k = K + 1

whereK is the current number of reference frames andnk is the number of objects assigned to
reference framek. ci denotes the reference frame that objecti is assigned to and ifci = K + 1, it
is assigned a new reference frame containing none of the previous objects andK increments by one
(to initialize, the first object starts its own reference frame andK = 1). This gives us an assignment
vectorc, whereci = j denotes reference framej contains imagei. Each block in the partition
(reference frame)j is associated with a rotationrj and is embedded in the spatial layout of the
scene with a center positionµj and spreadΣj (each of which is generated from a Gaussian-Inverse
Wishart distribution with shared parameters). Thus, we have defined the following generative model
for a set of images in a scene:

c|α ∼ CRP(α) µj ,Σj |µ0,Σ0, k0, ν0
iid
∼ GIW (µ0,Σ0, k0, ν0)

rj |θ
iid
∼ Discrete(θ) vi|φ

iid
∼ Discrete(φ)

xi|ci, µci
,Σci

∼ Gaussian (µci
,Σci

) P (yi|vi, rci
, ci) = A(i)(vi, rci

)

whereGIW signifies the Gaussian-Inverse-Wishart distribution, andα, µ0, Σ0, k0, ν0, θ, andφ are
hyperparameters of our model.

We use Gibbs sampling for inference [17], which gives us the cluster assignments for each image
and the updated parametersψj = (µj ,Σj , rj) for each clusterj. We begin by assigning each
image to its own reference frame and then iterating. For eachobserved image, we resampleci
from the set of existing clusters andm = 2 newly drawn clusters. After allci values have been
resampled, we discard any empty clusters and update the parameters of the remaining clusters by
drawing them from their posterior distribution given the objects assigned to that reference frame
p(ψj |{xi,yi : ci = j}), where{xi,yi : ci = j} is the set of images and their locations in reference
framej.

4.3 Predictions for human reference frame inference

What factors influence the reference frame assigned to an ambiguous image according to our ideal
observer model? Two factors it predicts should influence theimage’s inferred reference frame are
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Figure 4: Proximity effects: (a) Human results and (b) Modelresults. The closer the operator is to
the left number, the more likely it is to take the left number’s orientation.

proximity or how close the image is to unambiguous images (as images in the same reference frame
are coupled in spatial location) andalignment or the difference in the number of images assigned
to each reference frame. The general paradigm we use to test the predictions is to have the+ or ×
operator flanked by a number with different orientations on each side (see examples in Figure 3).
It is clear that the two numbers should have their own reference frame, but it is ambiguous which
reference frame the operator should be assigned to. We compare how each of these factors influences
the reference frames inferred in the scene by people and our model in two behavioral experiments.

5 Experiment 1: Proximity effects on reference frame inference

When the reference frame for an image is ambiguous and there are two conflicting neighboring
reference frames, our model predicts thatproximity or the distance of the ambiguous image to the
two conflicting reference frames should affect the reference frame adopted by the ambiguous image.
We explore this question using the method presented above, where participants are asked to solve
an arithmetic problem where the operator is ambiguous between+ or × and the two numbers have
conflicting reference frames (orientations). This allows us to deduce the reference frame inferred for
the operator image from the answer given by participants. Wemanipulate proximity by changing
the location of the operator such that it is closer to one of the two numbers as shown in Figure 3.

5.1 Methods

A total of 134 participants completed the experiment online through Amazon Mechanical Turk in
exchange for $0.20 USD. Four participants did not give a correct solution to the arithmetic problem
(neither the addition nor multiplication solution) leaving 130 participants for analysis. Participants
were asked to maximize their window before answering the arithmetic problem. All factors were
manipulated between subjects as preliminary testing demonstrated a strong effect of trial order on
the selected reference frame (probably because reference frames rarely change in the world).
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The primary factor of interest of the experiment was the position of the operator scored from -2
(far to the left) to 2 (far to the right), which was counterbalanced over participants (without the
0 position). The problem was viewed through a simulated aperture (to minimize the effect of the
monitor’s reference frame). See Figure 3 for example trialswith the operator in each position.
There were several other factors that were randomized over participants: the numbers in the problem
(randomly chosen single digit numbers), which number was rotated (left or right), the diagonal that
the numbers and operator were aligned on (positive diagonal, as shown in Figure 3, or negative
diagonal), and the rotation of the operator (+ or×).

5.2 Results and Discussion

Figure 4 (a) shows that participants are more likely to inferthe orientation of the left number for the
operator the closer it is to the left number. The results confirm our hypothesis: the closer the operator
is to an image with an unambiguous reference frame, the more likely participants are to infer that
reference frame for the operator (χ2(1) = 3.99, p < 0.05 for -2 vs. 2). A probit regression analysis
corroborates this result as the regression coefficient is significantly different from zero (p < 0.05).

The model results were generated using Gibbs sampling (as previously described) and shown in
Figure 4 (b). For each trial, we ran the sampler for50 burn-in iterations, recorded750 samples,
and then thinned the samples by selecting every5 samples. This left150 samples that formed
our estimate for the proportion of times the operator grouped with the left reference frame. The
parameters were initialized to:α = 0.001, µ0 = [264.7, 261.94], Σ0 = 1000I (scenes are550×550
pixels with the bottom-left corner as origin), whereI is the identity matrix,k0 = 0.2, andν0 = 110.
The discrete distributions encoding the priors on objects and orientations,θ andφ, were uniform
over allV andR possibilities. The model and human results clearly exhibitthe same qualitative
behavior: As the distance between the operator and the left number decreased, the probability the
operator took the orientation of the left number increased.

6 Experiment 2: Alignment effects on reference frame inference

Our model also predicts that the difference in the number of unambiguous images assigned to the
conflicting reference frames should affect the reference frame adopted by the operator image. In this
experiment, we test the prediction using the same method as above, but manipulate the number of
extra oriented unambiguous objects in each of the competingreference frames (see Figure 5 (a)).

6.1 Methods

A total of 80 people participated online through Amazon Mechanical Turkin exchange for $0.20
USD. There were12 participants who gave an incorrect answer, leaving68 participants for analysis.
The instructions and design were identical to the previous experiment, except that there were two
extra factors manipulating the context of the left and rightnumber (5 on the left and 1 on the right
or vice versa) and there were only two operator positions (-2and 2). Figure 5 (a) illustrates example
trials of the context manipulations for the operator in position -2.

6.2 Results and Discussion

Figure 5 (b) shows that participants were more likely to infer the operator’s orientation to be the ori-
entation of whichever side had more objects and it was closerto, replicating the effect of Experiment
1 (χ2(1) = 12.8728, p < 0.0005 ). Model results were generated using the same procedure andpa-
rameter values as Experiment 1 (exceptν0 = 10 to account for the increased number of objects) and
Figure 5 (c) shows its similarity to participant results.

7 Conclusions and future directions

In this paper, we introduced the first study of how people infer the reference frame of images in
scenes with multiple reference frames. We presented an implicit method for testing reference frame
inference, an ideal observer model that predicts people should be sensitive to two scene cues, and
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Figure 5: Alignment effects. The operator is more likely to take the orientation of the side with more
objects. 5L1R denotes five objects in the left reference frame and one object in the right, and 1L5R
indicates the opposite arrangement. (a) Example stimuli, (b) Human results, and (c) Model results.

behavioral evidence supporting its predictions. Because the objects people perceive depend on the
orientation of their images in the scene, these results improve our understanding of how the config-
uration of objects in scenes affects object perception.

We plan to extend our model to capture other cues identified byperceptual psychologists. A first
step is to include the bias towards using the up-down axis of the input image [8] by using a non-
uniform distribution over rotations (estimatingθ). We can capture theelongation cue (that the
orientation of the spread of images in a scene biases the orientation of the reference frame of the
images in the scene [5]) by coupling the covariance matrix (Σ) and rotation (r) of a reference frame.
Currently, our model assumes the positions of images in a reference frame are Gaussian distributed;
however, people have strong expectations about the arrangement of images in a scene [18]. We plan
to compare people’s bias to a sophisticated scene segmentation model [19]. We are also interested
in cues that depend on the structure of the images or the orientation of the agent in the world, like
axes of symmetry [5] or gravitational axes [8].

Another direction for future work is to address an assumption of the model: How do people learn the
set of objects and whether or not those objects are orientation-invariant? A potential solution is to
combine our model with previous work that presented a nonparametric Bayesian model for learning
features and the transformations they are allowed to undergo [20]. Hopefully, incorporating our
model into this feature learning method will yield better inferred features and, in turn, will help
create better feature generation and object recognition techniques by providing better understanding
of how people perceive objects from ambiguous image data.

Finally, we plan to explore how the presented principles scale to more realistic scenes with objects
more complex than+ and× and more orientations. Our paradigm provides a principled starting
point for investigating how reference frames are identifiedin scenes with multiple reference frames.
It is easily extended to more complex scenes by associating different orientations (or rotations in
depth) of an ambiguous image with different arithmetic operators. Our hope is that this leads to a
better understanding of object identification and reference frame identification.
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