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Abstract

Most existing hashing methods adopt some projection functions to project the o-
riginal data into several dimensions of real values, and then each of these projected
dimensions is quantized into one bit (zero or one) by thresholding. Typically, the
variances of different projected dimensions are different for existing projection
functions such as principal component analysis (PCA). Using the same number
of bits for different projected dimensions is unreasonable because larger-variance
dimensions will carry more information. Although this viewpoint has been widely
accepted by many researchers, it is still not verified by either theory or experiment
because no methods have been proposed to find a projection with equal variances
for different dimensions. In this paper, we propose a novel method, called isotrop-
ic hashing (IsoHash), to learn projection functions which can produce projected
dimensions with isotropic variances (equal variances). Experimental results on
real data sets show that IsoHash can outperform its counterpart with different vari-
ances for different dimensions, which verifies the viewpoint that projections with
isotropic variances will be better than those with anisotropic variances.

1 Introduction

Due to its fast query speed and low storage cost, hashing [1, 5] has been successfully used for
approximate nearest neighbor (ANN) search [28]. The basic idea of hashing is to learn similarity-
preserving binary codes for data representation. More specifically, each data point will be hashed
into a compact binary string, and similar points in the original feature space should be hashed into
close points in the hashcode space. Compared with the original feature representation, hashing has
two advantages. One is the reduced storage cost, and the other is the constant or sub-linear query
time complexity [28]. These two advantages make hashing become a promising choice for efficient
ANN search in massive data sets [1, 5, 6, 9, 10, 14, 15, 17, 20, 21, 23, 26, 29, 30, 31, 32, 33, 34].

Most existing hashing methods adopt some projection functions to project the original data into
several dimensions of real values, and then each of these projected dimensions is quantized into
one bit (zero or one) by thresholding. Locality-sensitive hashing (LSH) [1, 5] and its extension-
s [4, 18, 19, 22, 25] use simple random projections for hash functions. These methods are called
data-independent methods because the projection functions are independent of training data. Anoth-
er class of methods are called data-dependent methods, whose projection functions are learned from
training data. Representative data-dependent methods include spectral hashing (SH) [31], anchor
graph hashing (AGH) [21], sequential projection learning (SPL) [29], principal component analy-
sis [13] based hashing (PCAH) [7], and iterative quantization (ITQ) [7, 8]. SH learns the hashing
functions based on spectral graph partitioning. AGH adopts anchor graphs to speed up the com-
putation of graph Laplacian eigenvectors, based on which the Nystrom method is used to compute
projection functions. SPL leans the projection functions in a sequential way that each function is
designed to correct the errors caused by the previous one. PCAH adopts principal component anal-
ysis (PCA) to learn the projection functions. ITQ tries to learn an orthogonal rotation matrix to
refine the initial projection matrix learned by PCA so that the quantization error of mapping the data



to the vertices of binary hypercube is minimized. Compared to the data-dependent methods, the
data-independent methods need longer codes to achieve satisfactory performance [7].

For most existing projection functions such as those mentioned above, the variances of different
projected dimensions are different. Many researchers [7, 12, 21] have argued that using the same
number of bits for different projected dimensions with unequal variances is unreasonable because
larger-variance dimensions will carry more information. Some methods [7, 12] use orthogonal trans-
formation to the PCA-projected data with the expectation of balancing the variances of different
PCA dimensions, and achieve better performance than the original PCA based hashing. However,
to the best of our knowledge, there exist no methods which can guarantee to learn a projection with
equal variances for different dimensions. Hence, the viewpoint that using the same number of bit-
s for different projected dimensions is unreasonable has still not been verified by either theory or
experiment.

In this paper, a novel hashing method, called isotropic hashing (IsoHash), is proposed to learn a pro-
jection function which can produce projected dimensions with isotropic variances (equal variances).
To the best of our knowledge, this is the first work which can learn projections with isotropic vari-
ances for hashing. Experimental results on real data sets show that IsoHash can outperform its
counterpart with anisotropic variances for different dimensions, which verifies the intuitive view-
point that projections with isotropic variances will be better than those with anisotropic variances.
Furthermore, the performance of IsoHash is also comparable, if not superior, to the state-of-the-art
methods.

2 Isotropic Hashing

2.1 Problem Statement

Assume we are given n data points {X;, Xz, - -+ ,X,} with x; € R?, which form the columns of
the data matrix X € R%*™. Without loss of generality, in this paper the data are assumed to be
zero centered which means Y| x; = 0. The basic idea of hashing is to map each point x; into
a binary string y; € {0,1}" with m denoting the code size. Furthermore, close points in the
original space R? should be hashed into similar binary codes in the code space {0, 1}™ to preserve
the similarity structure in the original space. In general, we compute the binary code of x; as
yi = [h1(xi), ha(xi), -+, hm(x;)]T with m binary hash functions {hy(-)}7 ;.

Because it is NP hard to directly compute the best binary functions h(-) for a given data set [31],
most hashing methods adopt a two-stage strategy to learn hy(-). In the projection stage, m real-
valued projection functions { f,(x)}}"_, are learned and each function can generate one real value.
Hence, we have m projected dimensions each of which corresponds to one projection function. In
the quantization stage, the real-values are quantized into a binary string by thresholding.

Currently, most methods use one bit to quantize each projected dimension. More specifically,
hi(x;) = sgn(fr(x;)) where sgn(z) = 1 if x > 0 and 0 otherwise. The exceptions of the quan-
tization methods only contain AGH [21], DBQ [14] and MH [15], which use two bits to quantize
each dimension. In sum, all of these methods adopt the same number (either one or two) of bits
for different projected dimensions. However, the variances of different projected dimensions are
unequal, and larger-variance dimensions typically carry more information. Hence, using the same
number of bits for different projected dimensions with unequal variances is unreasonable, which has
also been argued by many researchers [7, 12, 21]. Unfortunately, there exist no methods which can
learn projection functions with equal variances for different dimensions. In the following content of
this section, we present a novel model to learn projections with isotropic variances.

2.2 Model Formulation

The idea of our IsoHash method is to learn an orthogonal matrix to rotate the PCA projection matrix.

To generate a code of m bits, PCAH performs PCA on X, and then use the top m eigenvectors of the
covariance matrix X X7 as columns of the projection matrix W € R%*™_ Here, top m eigenvectors
are those corresponding to the m largest eigenvalues {\;}}" ,, generally arranged with the non-



increasing order A\; > Ay > --- > A,,. Hence, the projection functions of PCAH are defined as

follows: f(x) = wix, where wy, is the kth column of W.

Let A = [A1, A2, -+, A]T and A = diag()\), where diag(\) denotes the diagonal matrix whose
diagonal entries are formed from the vector \. It is easy to prove that W7 X XTW = A. Hence, the
variance of the values {f(x;)}7_; on the kth projected dimension, which corresponds to the kth
row of WT X, is \g. Obviously, the variances for different PCA dimensions are anisotropic.

To get isotropic projection functions, the idea of our IsoHash method is to learn an orthogonal
matrix Q € R™*™ which makes Q7 W7 X XTW Q become a matrix with equal diagonal values,
ie, [QTWTXXTWQ]11 = [QTWIXXTWQla = -+ = [QTWTXXTWQ),m. Here, Ay
denotes the ith diagonal entry of a square matrix A, and a matrix @ is said to be orthogonal if
QTQ = I where I is an identity matrix whose dimensionality depends on the context. The effect
of the orthogonal matrix @ is to rotate the coordinate axes while keeping the Euclidean distances
between any two points unchanged. It is easy to prove that the new projection functions of IsoHash
are fr(x) = (WQ)Tx which have the same (isotropic) variance. Here (W Q) denotes the kth
column of W Q.

If we use tr(A) to denote the trace of a symmetric matrix A, we have the following Lemma 1.

Lemma 1. IfQTQ =1, tr(QT AQ) = tr(A).

Based on Lemma 1, we have tr(Q”WTXXTWQ) = tr(WTXXTW) = tr(A) = Yo, A if
QTQ = 1. Hence, to make Q"W XXTW(Q become a matrix with equal diagonal values, we

should set this diagonal value a = ZZ'LTM
Let
™o\
a:[al,a2,~--,am]withai:azk, (1)
m
and

T(z) ={T € R™*™|diag(T) = diag(z)},

where z is a vector of length m, diag(T") is overloaded to denote a diagonal matrix with the same
diagonal entries of matrix 7.

Based on our motivation of IsoHash, we can define the problem of IsoHash as follows:

Problem 1. The problem of IsoHash is to find an orthogonal matrix Q making QT WTXXTWQ €
T (a), where a is defined in (1).

Then, we have the following Theorem 1:

Theorem 1. Assume QTQ =T and T € T (a). If QTAQ = T, Q will be a solution to the problem
of IsoHash.

Proof. Because W X XTW = A, we have QTAQ = QT[WTXXTW]Q. It is obvious that Q
will be a solution to the problem of IsoHash. O

As in [2], we define
M(A) ={QTAQ|Q € O(m)}, 2)
where O(m) is the set of all orthogonal matrices in R™*™, i.e., QTQ = L.

According to Theorem 1, the problem of IsoHash is equivalent to finding an orthogonal matrix @
for the following equation [2]:

1T - Z||r =0, 3)

where T' € T(a), Z € M(A), || - ||r denotes the Frobenius norm. Please note that for ease of
understanding, we use the same notations as those in [2].

In the following content, we will use the Schur-Horn lemma [11] to prove that we can always find a
solution to problem (3).



Lemma 2. [Schur-Horn Lemma] Let ¢ = {¢;} € R™ and b = {b;} € R™ be real vectors in
non-increasing order respectively !, i.e., c1 > co > -+ > ¢, by > by > -+ > by, There exists a
Hermitian matrix H with eigenvalues c and diagonal values b if and only if

b; ¢, forany k =1,2,...,m,
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Proof. Please refer to Horn’s article [11]. O

Base on Lemma 2, we have the following Theorem 2.

Theorem 2. There exists a solution to the IsoHash problem in (3). And this solution is in the
intersection of T (a) and M(A).

m

i . -
Proof. Because \y > Ao > -+ > Apandag = as = -+ = @y, = ==Lt is easy to
prove that Zﬁg Ai > lenl A for any k. Hence, Zle N = kX E:TM >k x Z:Tl’\ =

S°¥_| ;. Furthermore, we can prove that 37", X; = > a;. According to Lemma 2, there exists
a Hermitian matrix H with eigenvalues A and diagonal values a.

Moreover, we can prove that H is in the intersection of 7 (a) and M(A), i.e., H € T(a) and
H e M(A). O

According to Theorem 2, to find a () solving the problem in (3) is equivalent to finding the intersec-
tion point of 7 (a) and M (A), which is just an inverse eigenvalue problem called SHIEP in [2].

2.3 Learning

The problem in (3) can be reformulated as the following optimization problem:

argmin [|IT — Z||F. 4)
Q:TeT (a),ZeM(A)

As in [2], we propose two algorithms to learn @Q: one is called lift and projection (LP), and the other
is called gradient flow (GF). For ease of understanding, we use the same notations as those in [2],
and some proofs of theorems are omitted. The readers can refer to [2] for the details.

2.3.1 Lift and Projection
The main idea of lift and projection (LP) algorithm is to alternate between the following two steps:

e Lift step:
Given a T™®) € T(a), we find the point Z*) € M(A) such that ||[T*) — Z®)||,. =
dist(T™), M(A)), where dist(T*), M(A)) denotes the minimum distance between 7'%)
and the points in M(A).

e Projection step:
Given a Z(®), we find T*+1) € T (a) such that [|T*+D) — Z(R)||, = dist(T (a), Z*),
where dist(T(a), Z(*)) denotes the minimum distance between Z(*) and the points in

T (a).

'Please note in [2], the values are in increasing order. It is easy to prove that our presentation of Schur-Horn
lemma is equivalent to that in [2]. The non-increasing order is chosen here just because it will facilitate our
following presentation due to the non-increasing order of the eigenvalues in A.



We call Z*) alift of T®) onto M(A) and T*+1) a projection of Z(*) onto 7 (a). The projection
operation is easy to complete. Suppose Z(*¥) = [z;;], then T 1) = [t;;] must be given by
2 ifi % j
ty=19 " T 5
J { a;,ifi = )
For the lift operation, we have the following Theorem 3.

Theorem 3. Suppose T = QT DQ is an eigen-decomposition of T where D = diag(d) with
d = [dy,da,...,d,]T being T’s eigenvalues which are ordered as dy > dg > -+ > d,,. Then the
nearest neighbor of T in M(A) is given by

Z=Q"AQ. (6)
Proof. See Theorem 4.1 in [3]. O
Since in each step we minimize the distance between 7" and Z, we have
||T(Ic) - Z(k)”F > ||T(k+1) 7 Z(k)HF > HT(kJrl) - Z(k:Jrl)HF

It is easy to see that (%), Z(*)) will converge to a stationary point. The whole IsoHash algorithm
based on LP, abbreviated as IsoHash-LP, is briefly summarized in Algorithm 1.

Algorithm 1 Lift and projection based IsoHash (IsoHash-LP)
Input: X € R¥>" m € Nt,t € NT
[A,W] = PCA(X,m), as stated in Section 2.2.
Generate a random orthogonal matrix Qg € R™*™,
7O+ QT AQy.
fork=1—tdo
Calculate T™) from Z*~1) by equation (5).
Perform eigen-decomposition of 7*) to get Q¥ DQj, = T™*).
Calculate Z(*) from @}, and A by equation (6).

e end for
o YV =sgn(QIWTX).
Output: Y

Because M (A) is not a convex set, the stationary point we find is not necessarily inside the intersec-
tion of 7 (a) and M (A). For example, if we set Z(®) = A, the lift and projection learning algorithm
would get no progress because the Z and T are already in a stationary point. To solve this problem
of degenerate solutions, we initiate Z as a transformed A with some random orthogonal matrix @,
which is illustrated in Algorithm 1.

2.3.2 Gradient Flow

Another learning algorithm is a continuous one based on the construction of a gradient flow (GF)
on the surface M(A) that moves towards the desired intersection point. Because there always ex-
ists a solution for the problem in (3) according to Theorem 2, the objective function in (4) can be
reformulated as follows [2]:

. L AT AN A 2
L F(Q) = 5 |diag(QAQ) ~ diag(a)] - @

The details about how to optimize (7) can be found in [2]. We just show some key steps of the
learning algorithm in the following content.
The gradient V F' at () can be calculated as

VF(Q) = 2A5(Q), ®)

where 3(Q) = diag(QTAQ) — diag(a). Once we have computed the gradient of F, it can be
projected onto the manifold O(m) according to the following Theorem 4.



Theorem 4. The projection of VF(Q) onto O(m) is given by

9(Q) = QIQTAQ, B(Q)] ©)
where [A, B = AB — BA is the Lie bracket.

Proof. See the formulas (20), (21) and (22) in [3]. ]
The vector field Q = —g(Q) defines a steepest descent flow on the manifold O(m) for function
F(Q). Letting Z = QTAQ and «(Z) = B(Q), we get

7 =2,[a(2), Z]), (10)
where Z is an isospectral flow that moves to reduce the objective function F(Q).

As stated by Theorems 3.3 and 3.4 in [2], a stable equilibrium point of (10) must be combined
with 8(Q) = 0, which means that F'(Q)) has decreased to zero. Hence, the gradient flow method
can always find an intersection point as the solution. The whole IsoHash algorithm based on GF,
abbreviated as IsoHash-GF, is briefly summarized in Algorithm 2.

Algorithm 2 Gradient flow based IsoHash (IsoHash-GF)

Input: X € R>*™ m e Nt

[A,W] = PCA(X,m), as stated in Section 2.2.

Generate a random orthogonal matrix Qg € R™*™,

7O« QT AQ,.

Start integration from Z = Z(9) with gradient computed from equation (10).
Stop integration when reaching a stable equilibrium point.

Perform eigen-decomposition of Z to get Q7 AQ = Z.

Y = sgn(QTWTX).

Output: Y

We now discuss some implementation details of IsoHash-GF. Since all diagonal matrices in M (A)
result in Z = 0, one should not use A as the starting point. In our implementation, we use the same
method as that in IsoHash-LP to avoid this degenerate case, i.e., a random orthogonal transformation
matrix Qg is use to rotate A. To integrate Z with gradient in (10), we use Adams-Bashforth-Moulton
PECE solver in [27] where the parameter RelTol is set to 10~3. The relative error of the algorithm
is computed by comparing the diagonal entries of Z to the target diag(a). The whole integration
process will be terminated when their relative error is below 1077,

2.4 Complexity Analysis

The learning of our IsoHash method contains two phases: the first phase is PCA and the second
phase is LP or GF. The time complexity of PCA is O(min(n2d, nd?)). The time complexity of
LP after PCA is O(m3t), and that of GF after PCA is O(m?). In our experiments, ¢ is set to 100
because good performance can be achieved at this setting. Because m is typically set to be a very
small number like 64 or 128, the main time complexity of IsoHash is from the PCA phase. In
general, the training of IsoHash-GF will be faster than IsoHash-LP in our experiments.

One promising property of both LP and GF is that the time complexity after PCA is independent of
the number of training data, which makes them scalable to large-scale data sets.

3 Relation to Existing Works

The most related method of IsoHash is ITQ [7], because both ITQ and IsoHash have to learn an
orthogonal matrix. However, IsoHash is different from ITQ in many aspects: firstly, the goal of
IsoHash is to learn a projection with isotropic variances, but the results of ITQ cannot necessari-
ly guarantee isotropic variances; secondly, IsoHash directly learns the orthogonal matrix from the
eigenvalues and eigenvectors of PCA, but ITQ first quantizes the PCA results to get some binary



codes, and then learns the orthogonal matrix based on the resulting binary codes; thirdly, IsoHash
has an explicit objective function to optimize, but ITQ uses a two-step heuristic strategy whose
goal cannot be formulated by a single objective function; fourthly, to learn the orthogonal matrix,
IsoHash uses Lift and Projection or Gradient Flow, but ITQ uses Procruster method which is much
slower than IsoHash. From the experimental results which will be presented in the next section, we
can find that IsoHash can achieve accuracy comparable to ITQ with much faster training speed.

4 Experiment

4.1 Data Sets

We evaluate our methods on two widely used data sets, CIFAR [16] and LabelMe [28].

The first data set is CIFAR-10 [16] which consists of 60,000 images. These images are manually
labeled into 10 classes, which are airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and
truck. The size of each image is 3232 pixels. We represent them with 256-dimensional gray-scale
GIST descriptors [24].

The second data set is 22K LabelMe used in [23, 28] which contains 22,019 images sampled from
the large LabelMe data set. As in [28], The images are scaled to 32x32 pixels, and then represented
by 512-dimensional GIST descriptors [24].

4.2 Evaluation Protocols and Baselines

As the protocols widely used in recent papers [7, 23, 25, 31], Euclidean neighbors in the original s-
pace are considered as ground truth. More specifically, a threshold of the average distance to the 50th
nearest neighbor is used to define whether a point is a true positive or not. Based on the Euclidean
ground truth, we compute the precision-recall curve and mean average precision (mAP) [7, 21]. For
all experiments, we randomly select 1000 points as queries, and leave the rest as training set to learn
the hash functions. All the experimental results are averaged over 10 random training/test partitions.

Although a lot of hashing methods have been proposed, some of them are either supervised [23]
or semi-supervised [29]. Our IsoHash method is essentially an unsupervised one. Hence, for fair
comparison, we select the most representative unsupervised methods for evaluation, which contain
PCAH [7], ITQ [7], SH [31], LSH [1], and SIKH [25]. Among these methods, PCAH, ITQ and SH
are data-dependent methods, while SIKH and LSH are data-independent methods.

All experiments are conducted on our workstation with Intel(R) Xeon(R) CPU X7560@2.27GHz
and 64G memory.

4.3 Accuracy

Table 1 shows the Hamming ranking performance measured by mAP on LabelMe and CIFAR. It
is clear that our IsoHash methods, including both IsoHash-GF and IsoHash-LP, achieve far better
performance than PCAH. The main difference between IsoHash and PCAH is that the PCAH di-
mensions have anisotropic variances while IsoHash dimensions have isotropic variances. Hence,
the intuitive viewpoint that using the same number of bits for different projected dimensions with
anisotropic variances is unreasonable has been successfully verified by our experiments. Further-
more, the performance of IsoHash is also comparable, if not superior, to the state-of-the-art methods,
such as ITQ.

Figure 1 illustrates the precision-recall curves on LabelMe data set with different code sizes. The
relative performance in the precision-recall curves on CIFAR is similar to that on LabelMe. We omit
the results on CIFAR due to space limitation. Once again, we can find that our IsoHash methods can
achieve performance which is far better than PCAH and comparable to the state-of-the-art.

4.4 Computational Cost

Table 2 shows the training time on CIFAR. We can see that our IsoHash methods are much faster
than ITQ. The time complexity of ITQ also contains two parts: the first part is PCA which is the same



Table 1: mAP on LabelMe and CIFAR data sets.

[ Method | LabelMe [ CIFAR |

# bits 32 64 96 128 256 32 64 96 128 256

IsoHash-GF 0.2580 0.3269 0.3528 0.3662 0.3889 0.2249 0.2969 0.3256 0.3357 0.3600

IsoHash-LP 0.2534 0.3223 0.3577 0.3826 0.4274 0.1907 0.2624 0.3027 0.3223 0.3651

PCAH 0.0516 0.0401 0.0341 0.0307 0.0232 0.0319 0.0274 0.0241 0.0216 0.0168

1ITQ 0.2786 0.3328 0.3504 0.3615 0.3728 0.2490 0.3051 0.3238 0.3319 0.3436

SH 0.0826 0.1034 0.1447 0.1653 0.2080 0.0510 0.0589 0.0802 0.1121 0.1535

SIKH 0.0590 0.1482 0.2074 0.2526 0.4488 0.0353 0.0902 0.1245 0.1909 0.3614

LSH 0.1549 0.2574 0.3147 0.3375 0.4034 0.1052 0.1907 0.2396 0.2776 0.3432
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Figure 1: Precision-recall curves on LabelMe data set.

as that in IsoHash, and the second part is an iteration algorithm to rotate the original PCA matrix
with time complexity O(nm?), where n is the number of training points and mn is the number of bits
in the binary code. Hence, as the number of training data increases, the second-part time complexity
of ITQ will increase linearly to the number of training points. But the time complexity of IsoHash
after PCA is independent of the number of training points. Hence, IsoHash will be much faster than
ITQ, particularly in the case with a large number of training points. This is clearly shown in Figure 2
which illustrates the training time when the numbers of training data are changed.

Table 2: Training time (in second) on CIFAR. ity
| 3
[ #bits | 32 | 64 | 96 | 128 [ 256 | g ||om
IsoHash-GF | 2.48 | 2.45 | 2.70 | 3.00 5.55 £ 30[lA—pean
IsoHash-LP | 2.14 | 243 | 294 | 347 8.83 g "
PCAH 1.84 | 2.14 | 2.23 | 2.36 2.92 g
ITQ 4.35 | 6.33 | 9.73 | 12.40 | 29.25 10 y
SH 1.60 | 3.41 | 837 | 13.66 | 49.44 ]
SIKH | 1.30 | 1.44 | 157 | 155 | 220 e
LSH 0.05 | 0.08 | 0.11 | 0.19 0.31 Number of training data 10

Figure 2: Training time on CIFAR .
S Conclusion

Although many researchers have intuitively argued that using the same number of bits for different
projected dimensions with anisotropic variances is unreasonable, this viewpoint has still not been
verified by either theory or experiment because no methods have been proposed to find projection
functions with isotropic variances for different dimensions. The proposed IsoHash method in this
paper is the first work to learn projection functions which can produce projected dimensions with
isotropic variances (equal variances). Experimental results on real data sets have successfully veri-
fied the viewpoint that projections with isotropic variances will be better than those with anisotropic
variances. Furthermore, IsoHash can achieve accuracy comparable to the state-of-the-art methods
with faster training speed.
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