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Abstract

An effective strategy to exploit the supervising side information for discovering
predictive topic representations is to impose discriminative constraints induced by
such information on the posterior distributions under a topic model. This strate-
gy has been adopted by a number of supervised topic models, such as MedLDA,
which employs max-margin posterior constraints. However, unlike the likelihood-
based supervised topic models, of which posterior inference can be carried out us-
ing the Bayes’ rule, the max-margin posterior constraints have made Monte Carlo
methods infeasible or at least not directly applicable, thereby limited the choice
of inference algorithms to be based on variational approximation with strict mean
field assumptions. In this paper, we develop two efficient Monte Carlo methods
under much weaker assumptions for max-margin supervised topic models based
on an importance sampler and a collapsed Gibbs sampler, respectively, in a con-
vex dual formulation. We report thorough experimental results that compare our
approach favorably against existing alternatives in both accuracy and efficiency.

1 Introduction

Topic models, such as Latent Dirichlet Allocation (LDA) [3], have shown great promise in discover-
ing latent semantic representations of large collections of text documents. In order to fit data better,
LDA has been successfully extended in various ways. One notable extension is supervised topic
models, which were developed to incorporate supervising side information for discovering predic-
tive latent topic representations. Representative methods include supervised LDA (sLDA) [2, 12],
discriminative LDA (DiscLDA) [8], and max-entropy discrimination LDA (MedLDA) [16].

MedLDA differs from its counterpart supervised topic models by imposing discriminative con-
straints (i.e., max-margin constraints) directly on the desired posterior distributions, instead of defin-
ing a normalized likelihood model as in sLDA and DiscLDA. Such topic models with max-margin
posterior constraints have shown superior performance in various settings [16, 14, 13, 9]. However,
their constrained formulations, especially when using soft margin constraints for inseparable practi-
cal problems, make it infeasible or at least hard if possible at all1 to directly apply Monte Carlo (MC)
methods [10], which have been widely used in the posterior inference of likelihood based models,
such as the collapsed Gibbs sampling methods for LDA [5]. Previous inference methods for such
models with max-margin posterior constraints have been exclusively on the variational methods [7]
usually with a strict mean-field assumption. Although factorized variational methods often seek
faster approximation solutions, they could be inaccurate or obtain too compact results [1].

∗‡indicates equal contributions from these authors.
1Rejection sampling can be applied when the constraints are hard, e.g., for separable problems. But it would

be inefficient when the sample space is large.
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In this paper, we develop efficient Monte Carlo methods for max-margin supervised topic models,
which we believe is crucial for highly scalable implementation, and further performance enhance-
ment of this class of models. Specifically, we first provide a new and equivalent formulation of the
MedLDA as a regularized Bayesian model with max-margin posterior constraints, based on Zell-
ner’s interpretation of Bayes’ rule as a learning model [15] and the recent development of regularized
Bayesian inference [17]. This interpretation is arguably more natural than the original formulation
of MedLDA as a hybrid max-likelihood and max-margin learning, where the log-likelihood is ap-
proximated by a variational upper bound for computational tractability. Then, we deal with the set
of soft max-margin constraints with convex duality methods and derive the optimal solutions of the
desired posterior distributions. To effectively reduce the size of the sampling space, we develop two
samplers, namely, an importance sampler and a collapsed Gibbs sampler [4, 1], with a much weaker
assumption on the desired posterior distribution compared to the mean field methods in [16]. We
note that the work [11] presents a duality method to handle moment matching constraints in max-
imum entropy models. Our work is an extension of their results to learn topic models, which have
nontrivially structured latent variables and also use the general soft margin constraints.

2 Latent Dirichlet Allocation

LDA [3] is a hierarchical Bayesian model that posits each document as an admixture of K topics,
where each topic Φk is a multinomial distribution over a V -word vocabulary. For document d, its
topic proportion θd is a multinomial distribution drawn from a Dirichlet prior. Let wd = {wdn}N

n=1
denote the words appearing in document d. For the n-th word wdn, a topic assignment zdn = k is
drawn from θd and wdn is drawn from Φk. In short, the generative process of d is

θd ∼ Dir(α), zdn = k ∼ Mult(θd), wdn ∼ Mult(Φk), (1)
where Dir(·) is a Dirichlet, Mult(·) is a multinomial. For fully-Bayesian LDA, the topics are also
random samples drawn from a Dirichlet prior, i.e., Φk ∼ Dir(β).

Let W = {wd}D
d=1 denote all the words in a corpus with D documents, and define zd = {zdn}N

n=1,
Z = {zd}D

d=1, Θ = {θd}D
d=1. The goal of LDA is to infer the posterior distribution

p(Θ,Z,Φ|W, α, β) =
p0(Θ,Z,Φ|α, β)p(W|Θ,Z,Φ)

p(W|α, β)
. (2)

Since inferring the true posterior distribution is intractable, researchers must resort to variational [3]
or Monte Carlo [5] approximate methods. Although both methods have shown success in various
scenarios. They have complementary advantages. For example, variational methods (e.g., mean-
field) can be generally more efficient, while MC methods can obtain more accurate estimates.

3 MedLDA: a supervised topic model with max-margin constraints

MedLDA extends LDA by integrating the max-margin learning into the procedure of discovering
latent topic representations to learn latent representations that are good for predicting class labels
or rating scores of a document. Empirically, MedLDA and its various extensions [14, 13, 9] have
demonstrated promise in learning more discriminative topic representations. The original MedL-
DA was designed as a hybrid max likelihood and max-margin learning, where the intractable log-
likelihood is approximated by a variational bound. To derive our sampling methods, we present a
new interpretation of MedLDA from the perspective of regularized Bayesian inference [17].

3.1 Bayesian inference as a learning model

As shown in Eq. (2), Bayesian inference is an information processing rule that projects the prior
p0 and empirical evidence to a post-data posterior distribution via the Bayes’ rule. It is the core
for likelihood-based supervised topic models [2, 12]. A fresh interpretation of Bayesian inference
was given by Zellner [15], which leads to our novel interpretation of MedLDA. Specifically, Zellner
showed that the posterior distribution by Bayes’ rule is the solution of an optimization problem. For
instance, the posterior p(Θ,Z,Φ|W) of LDA is equivalent to the optimum solution of

min
p(Θ,Z,Φ)∈P

KL[p(Θ,Z,Φ)∥p0(Θ,Z,Φ)] − Ep[log p(W|Θ,Z,Φ)], (3)

where KL(q||p) is the Kullback-Leibler divergence from q to p, and P is the space of probability
distributions. We will use L(p(Θ,Z,Φ)) to denote the objective function.
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3.2 MedLDA: a regularized Bayesian model

For brevity, we consider the classification model. Let D = {(wd, yd)}D
d=1 be a given fully-labeled

training set, where the response variable Y takes values from a finite set Y = {1, . . . ,M}. MedLDA
consists of two parts. The first part is an LDA likelihood model for describing input documents. As
in previous work, we use the partial2 likelihood model for W. The second part is a mechanism to
consider supervising signal. Since our goal is to discover latent representations Z that are good for
classification, one natural solution is to connect Z directly to our ultimate goal. MedLDA obtains
such a goal by building a classification model on Z. One good candidate of the classification model
is the max-margin methods, which avoid defining a normalized likelihood model [12].

Formally, let η denote the parameters of the classification model. To make the model fully-Bayesian,
we also treat η random. Then, we want to infer the joint posterior distribution p(η, Θ,Z,Φ|D). For
classification, MedLDA defines the following discrimination function

F (y, η, z;w) = η⊤f(y, z̄), F (y;w) = Ep(η,z|w)[F (y, η, z;w)], (4)

where z̄ is a K-dim vector whose element z̄k equals to 1
N

∑N
n=1 I(zn = k), and I(x) is an indicator

function which equals to 1 when x is true otherwise 0; f(y, z̄) is an MK-dim vector whose
elements from (y − 1)K to yK are z̄ and all others are zero; and η is an MK-dimensional vector
concatenating M class-specific sub-vectors. With the above definitions, a natural prediction rule is

ŷ = argmax
y

F (y;w), (5)

and we would like to “regularize” the properties of the latent topic representations to make them
suitable for a classification task. One way to achieve that goal is to take the optimization view of
Bayes’ theorem and impose the following max-margin constraints to problem (3)

F (yd;wd) − F (y;wd) ≥ ℓd(y) − ξd, ∀y ∈ Y, ∀d, (6)

where ℓd(y) is a non-negative function that penalizes the wrong predictions; ξ = {ξd}D
d=1

are non-negative slack variables for inseparable cases. Let L(p) = KL(p||p0(η,Θ,Z,Φ)) −
Ep[log p(W|Z,Φ)] and ∆f(y, z̄d) = f(yd, z̄d) − f(y, z̄d). Then, we define the soft-margin
MedLDA as solving

min
p(η,Θ,Z,Φ)∈P,ξ

L(p(η,Θ,Z,Φ)) +
C

D

D∑

d=1

ξd

s.t. : Ep[η⊤∆f(y, z̄d)] ≥ ℓd(y) − ξd, ξd ≥ 0, ∀d, ∀y,

(7)

where the prior is p0(η,Θ,Z,Φ) = p0(η)p0(Θ,Z,Φ).

With the above discussions, we can see that MedLDA is an instance of regularized Bayesian
models [17]. Also, problem (7) can be equivalently written as

min
p(η,Θ,Z,Φ)∈P

L(p(η,Θ,Z,Φ)) + CR(p(η,Θ,Z,Φ)) (8)

where R = 1
D

∑
d argmaxy(ℓd(y) − Ep[η

⊤∆f(y, z̄d)]) is the hinge loss, an upper bound of the
prediction error on training data.

4 Monte Carlo methods for MedLDA

As in other variants of topic models, it is intractable to solve problem (7) or the equivalent
problem (8) directly. Previous solutions resort to variational mean-field approximation methods. It
is easy to show that the variational EM method in [16] is a coordinate descent algorithm to solve
problem (7), with the additional fully-factorized mean-field constraint,

p(η, Θ,Z,Φ) = p(η)(
∏

d

p(θd)
∏

n

p(zdn))
∏

k

p(Φk). (9)

Below, we present two MC sampling methods to solve the MedLDA problem, with much weaker
constraints on p, and thus they could be expected to produce more accurate solutions.

Specifically, we assume p(η, Θ,Z,Φ) = p(η)p(Θ,Z,Φ). Then, the general procedure is to alter-
nately solve problem (8) by performing the following two steps.

2A full likelihood model on both W and Y can be defined as in [12]. But its normalization constant (a
function of Z) could make the problem hard to solve.

3



Estimate p(η): Given p(Θ,Z,Φ), the subproblem (in an equivalent constrained form) is to solve

min
p(η),ξ

KL(p(η)∥p0(η)) +
C

D

D∑

d=1

ξd

s.t. : Ep[η]⊤∆f(y, E[z̄d]) ≥ ℓd(y) − ξd, ξd ≥ 0, ∀d, ∀y.

(10)

By using the Lagrangian methods with multipliers λ, we have the optimum posterior distribution

p(η) ∝ p0(η)eη⊤·∑D
d=1

∑
y λy

d∆f(y,E[z̄d]). (11)

For the prior p0, for simplicity, we choose the standard normal prior, i.e., p0(η) = N (0, I). In this
case, p(η) = N (κ, I) and the dual problem is

max
λ

− 1

2
κ⊤κ +

D∑

d=1

∑

y

λy
dℓd(y)

s.t. :
∑

y

λy
d ∈ [0,

C

D
], ∀d.

(12)

where κ =
∑D

d=1

∑
y λy

d∆f(y, E[z̄d]). Note that κ is the posterior mean of classifier parameters η,
and the element κyk represents the contribution of topic k in classifying a data point to category y.
This problem is the dual problem of a multi-class SVM [6] and we can solve it (or its primal form)
efficiently using existing high-performance SVM learners. We denote the optimum solution of this
problem by (p∗(η), κ∗, ξ∗, λ∗).

Estimate p(Θ,Z,Φ): Given p(η), the subproblem (in an equivalent constrained form) is to solve

min
p(Θ,Z,Φ),ξ

L(p(Θ,Z,Φ)) +
C

D

D∑

d=1

ξd

s.t. : (κ∗)⊤∆f(y, Ep[z̄d]) ≥ ℓd(y) − ξd, ξd ≥ 0, ∀d, ∀y.

(13)

Although in theory we can solve this subproblem again using Lagrangian dual methods, it would
be hard to derive the dual objective function (if possible at all). Here, we use the same strategy as
in [16], that is, to update p(Θ,Z,Φ) for only one step with ξ being fixed at ξ∗ (the optimum solution
of the previous step). It is easy to show that by fixing ξ at ξ∗, we will have the optimum solution

p(Θ,Z,Φ) ∝ p(W,Z,Θ,Φ)e(κ∗)⊤ ∑
dy(λy

d)∗∆f(y,z̄d), (14)

The differences between MedLDA and LDA lie in the above posterior distribution. The first term
is the same as the posterior of LDA (the evidence p(W) can be absorbed into the normalization
constant). The second term indicates the regularization effects due to the max-margin posterior con-
straints, which is consistent with our intuition. Specifically, for those data with non-zero Lagrange
multipliers (i.e., the data are around the decision boundary or misclassified), the second term will
bias the model towards a new posterior distribution that favors more discriminative representations
on these “hard” data points.

Now, the remaining problem is how to efficiently draw samples from p(Θ,Z,Φ) and estimate the
expectations E[z̄] as accurate as possible, which are needed in learning classification models. Below,
we present two representative samplers – an importance sampler and a collapsed Gibbs sampler.

4.1 Importance sampler

To avoid dealing with the intractable normalization constant of p(Θ,Z,Φ), one natural choice is
to use importance sampling. Importance sampling aims at drawing some samples from a “simple”
distribution and the expectation is estimated as a weighted average over these samples. However,
directly applying importance sampling to p(Θ,Z,Φ) may cause some issues since importance sam-
pling suffers from severe limitations in large sample spaces. Alternatively, since the distribution
p(Θ,Z,Φ) in Eq. (14) has the factorization form p(Θ,Z,Φ) = p0(Θ,Φ)p(Z|Θ,Φ), another pos-
sible method is to adopt the ancestral sampling strategy to draw sample (Θ̂, Φ̂) from p0(Θ,Φ) and
then draw samples from p(Z|Θ̂, Φ̂). Although it is easy to draw a sample from the Dirichlet prior
p0(Θ,Φ) = Dir(α)Dir(β), it would require a large number of samples to get a robust estimate of
the expectations E[Z]. Below, we present one solution to reduce sample space.
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One feasible method to reduce the sample space is to collapse (Θ,Φ) out and directly draw
samples from the marginal distribution p(Z). However, this will cause tight couplings between Z
and make the number of samples needed to estimate the expectation grow exponentially with the
dimensionality of Z for importance sampler. A practical sampler for this collapsed distribution
would be a Markov chain, as we will present in next section. Here, we propose to use the MAP
estimate of (Θ,Φ) as their “single sample”3 and proceed to draw samples of Z. Specifically, given
(Θ̂, Φ̂), we have the conditional distribution

p(Z|Θ̂, Φ̂) ∝ p(W,Z|Θ̂, Φ̂)e(κ∗)⊤ ∑
dy(λy

d)∗∆f(y,z̄d) =

D∏

d=1

Nd∏

n=1

p(zdn|θ̂d, Φ̂), (15)

where p(zdn = k|θ̂d, Φ̂, wdn = t) =
1

Zdn
ϕ̂ktθ̂dke

1
Nd

∑
y(λy

d)∗(κ∗
ydk−κ∗

yk) (16)

and Zdn is a normalization constant, and κ∗
yk is the [(y −1)K +k]-th element of κ∗. The difference

(κ∗
ydk − κ∗

yk) represents the different contribution of topic k in classifying d to the true category yd

and a wrong category y. If the difference is positive, topic k contributes to make a correct prediction
for d; otherwise, it contributes to make a wrong prediction.

Then, we draw J samples {z
(j)
dn }J

j=1 from a proposal distribution g(z) and compute the expectations

E[z̄dk] =
1

Nd

Nd∑

n=1

E[zdn],∀z̄dk ∈ z̄d and E[zdn] ≈
J∑

j=1

γj
dn∑J

j=1 γj
dn

z
(j)
dn , (17)

where the importance weight γj
dn is

γj
dn =

K∏

k=1

(
θ̂dkϕ̂kwdn

g(k)
e

1
Nd

∑
y(λy

d)∗(κ∗
ydk−κ∗

yk)

)I(z(j)
dn =k)

(18)

With the J samples, we update the MAP estimate (Θ̂, Φ̂)

θ̂dk ∝ 1
J

∑Nd

n=1

∑J
j=1

γj
dn∑J

j=1 γj
dn

I(z(j)
dn = k) + αk

ϕ̂kt ∝ 1
J

∑D
d=1

∑Nd

n=1

∑J
j=1

γj
dn∑J

j=1 γj
dn

I(z(j)
dn = k)I(wdn = t) + βt.

(19)

The above two steps are repeated until convergence, initializing (Θ̂, Φ̂) to be uniform, and the
samples from the last iteration are used to estimate the expectation statistics needed in the problem
of inferring p(η).

4.2 Collapsed Gibbs sampler

As we have stated, another way to effectively reduce the sample space is to integrate out the
intermediate variables (Θ,Φ) and build a Markov chain whose equilibrium distribution is the
resulting marginal distribution p(Z). We propose to use collapsed Gibbs sampling, which has been
successfully used for LDA [5]. For MedLDA, we integrate out (Θ,Φ) and get the marginalized
posterior distribution

p(Z) = p(W,Z|α,β)
Zq

e(κ∗)⊤ ∑
d

∑
y(λy

d)∗∆f(y,z̄d)

= 1
Z

[ ∏D
d=1

δ(Cd+α)
δ(α) e(κ∗)⊤ ∑

y(λy
d)∗∆f(y,z̄d)

][ ∏K
k=1

δ(Ck+β)
δ(β)

]
,

(20)

where δ(x) =
∏dim(x)

i=1 Γ(xi)

Γ(
∑dim(x)

i=1 xi)
, Ct

k is the number of times the term t being assigned to topic k over the

whole corpus and Ck = {Ct
k}V

t=1; Ck
d is the number of times that terms being associated with topic

k within the d-th document and Cd = {Ck
d }K

k=1. We can also derive the transition probability of
one variable zdn given others which we denote by Z¬ as:

p(zdn = k|Z¬,W¬, wdn = t) ∝
Ct

k,¬n + βt
∑

t Ct
k,¬n +

∑V
t=1 βt

(Ck
d,¬n+αk)e

1
Nd

∑
y(λy

d)∗(κ∗
ydk−κ∗

yk) (21)

where C·
·,¬n indicates that term n is excluded from the corresponding document or topic.

Again, we can see the difference between MedLDA and LDA (using collapsed Gibbs sampling)
from the additional last term in Eq. (21), which is due to the max-margin posterior constraints.

3This collapses the sample space of (Θ,Φ) to a single point.
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For those data on the margin or misclassified (with non-zero Lagrange multipliers), the last term is
non-zero and acts as a regularizer directly affecting the topic assignments of these difficult data.

Then, we use the transition distribution in Eq. (21) to construct a Markov chain. After this Markov
chain has converged (i.e., finished the burn-in stage), we draw J samples {Z(j)} and estimate the
expectation statistics

E[z̄dk] =
1

Nd

Nd∑

n=1

E[zdn], ∀z̄dk ∈ z̄d, and E[zdn] =
1

J

J∑

j=1

z
(j)
dn . (22)

4.3 Prediction

To make prediction on unlabeled testing data using the prediction rule (5), we take the approach that
has been adopted for the variational MedLDA, which uses a point estimate of topics Φ from training
data and makes prediction based on them. Specifically, we use the MAP estimate Φ̂ to replace the
probability distribution p(Φ). For the importance sampler, Φ̂ is computed as in Eq. (19). For the
collapsed Gibbs sampler, an estimate of Φ̂ using the samples is ϕ̂kt ∝ 1

J

∑J
j=1 Ct

k
(j)

+ βt, where

Ct
k
(j) is the times that term t is assigned to topic k in the j-th sample.

Given a new document w to be predicted, for importance sampler, the importance weight should
be altered as γj

n =
∏K

k=1(θkϕ̂kwn/g(k))I(z(j)
n =k). Then, we approximate the expectation of z as

in Eq. (17). For Gibbs sampler, we infer its latent components z using the obtained Φ̂ as p(zn =

k|z¬n) ∝ ϕ̂kwn(Ck
¬n + αk), where Ck

¬n is the times that the terms in this document w assigned to
topic k with the n-th term excluded. Then, we approximate the E[z̄] as in Eq. (22).

5 Experiments

We empirically evaluate the importance sampler and the Gibbs sampler for MedLDA (denoted by
iMedLDA and gMedLDA respectively) on the 20 Newsgroups data set with a standard list of stop
words4 removed. This data set contains about 20K postings within 20 groups. Due to space limita-
tion, we focus on the multi-class setting.

We use the cutting-plane algorithm [6] to solve the multi-class SVM to infer p(η) and solve for
the lagrange multipliers λ in MedLDA. For simplicity, we use the uniform proposal distribution g
in iMedLDA. In this case, we can globally draw J (e.g., = 3 × K) samples {Z(j)}J

j=1 from g(z)
outside the iteration loop and only update the importance weights to save time. For gMedLDA,
we keep J (e.g., 20) adjacent samples after gMedLDA has converged to estimate the expectation
statistics. To be fair, we use the same C for different MedLDA methods. The optimum C is chosen
via 5-fold cross validation during the training procedure of fMedLDA from {a2 : a = 1, . . . , 8}. We
use symmetric Dirichlet priors for all LDA topic models, i.e., α = αeK and β = βeV , where en

is a n-dim vector with every entry being 1. We assess the convergence of a Markov chain when (1)
it has run for a maximum number of iterations (e.g., 100), or (2) the relative change in its objective,
i.e., |Lt+1−Lt|

Lt , is less than a tolerance threshold ϵ (e.g., ϵ = 10−4). We use the same strategy to
judge whether the overall inference algorithm converges.

We randomly select 7,505 documents from the whole set as the test set and the rest as the training
data. We set the cost parameter ℓd(y) in problem (7) to be 16, which produces better classification
performance than the standard 0/1 cost [16]. To measure the sparsity of the latent representations
of documents, we compute the average entropy over test documents: 1

|Dt|
∑

d∈Dt
H(θd). We also

measure the sparsity of the inferred topic distributions Φ in terms of the average entropy over topics,
i.e., 1

K

∑K
k=1 H(Φk). All experiments are carried out on a PC with 2.2GHz CPU and 3.6G RAM.

We report the mean and standard deviation for each model with 4 times randomly initialized runs.

5.1 Performance with different topic numbers

This section compares gMedLDA and iMedLDA with baseline methods. MedLDA was shown to
outperform sLDA for document classification. Here, we focus on comparing the performance of
MedLDA and LDA when using different inference algorithms. Specifically, we compare with the

4http://mallet.cs.umass.edu/
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Figure 1: Performance of multi-class classification of different topic models with different topic
numbers on 20-Newsgroups data set: (a) classification accuracy, (b) the average entropy of Θ over
test documents, and (c) The average entropy of topic distributions Φ.

LDA model that uses collapsed Gibbs sampling [5] (denoted by gLDA) and the LDA model that
uses fully-factorized variational methods [3] (denoted by fLDA). For LDA models, we discover the
latent representations of the training documents and use them to build a multi-class SVM classifier.
For MedLDA, we report the results when using fully-factorized variational methods (denoted by
fMedLDA) as in [16]. Furthermore, fMedLDA and fLDA optimize the hyper-parameter α using
the Newton-Rampion method [3], while gMedLDA, iMedLDA and gLDA determine α by 5-fold
cross-validation. We have tested a wide range of values of β (e.g., 10−16 ∼ 103) and found that the
performance of iMedLDA degrades seriously when β is larger than 10−3. Therefore, we set β to be
10−5 for iMedLDA while 0.01 for the other topic models just as in the literature [5].

Fig. 1(a) shows the accuracy. We can see that Monte Carlo methods generally outperform the fully-
factorized mean-field methods, mainly because of their weaker factorization assumptions. The rea-
son for the superior performance of iMedLDA over gMedLDA is probably because iMedLDA is
more effective in dealing with sample sparsity issues. More insights will be provided in Section 5.2.

Fig. 1(b) shows the average entropy of latent representations Θ over test documents. We find that
the entropy of gMedLDA and iMedLDA are smaller than those of gLDA and fLDA, especially for
(relatively) large K. This implies that sampling methods for MedLDA can effectively concentrate
the probability mass on just several topics thus discover more predictive topic representations. How-
ever, fMedLDA yields the smallest entropy, which is mainly because the fully-factorized variational
methods tend to get too compact results, e.g., sparse local optimums.

Fig. 1(c) shows the average entropy of topic distributions Φ over topics. We can see that gMedLDA
improves the sparsity of Φ than fMedLDA. However, gMedLDA’s entropy is larger than gLDA’s.
This is because for those “hard” documents, the exponential component in Eq. (21) “regularizes”
the conditional probability p(zdn|Z¬) and leads to a smoother estimate of Φ. On the other hand,
we find that iMedLDA has the largest entropy. This is probably because many of the samples (topic
assignments) generated by the proposal distribution are “incorrect” but importance sampler still
assigns weights to these samples. As a result, the inferred topic distributions are very dense and thus
have a large entropy.

Moreover, in the above experiments, we found that the lagrange multipliers in MedLDA are very
sparse (about 1% non-zeros for both iMedLDA and gMedLDA; about 1.5% for fMedLDA), much
sparser than those of SVM built on raw input data (about 8% non-zeros).

5.2 Sensitivity analysis with respect to key parameters

Sensitivity to α. Fig. 2(a) shows the classification performance of gMedLDA and iMedLDA with
different values of α. We can see that the performance of gMedLDA increases as α becomes large
and retains stable when α is larger than 0.1. In contrast, the accuracy of iMedLDA decreases a bit
(especially for small K) when α becomes large, but is relative stable when α is small (e.g., ≤ 0.01).
This is probably because with a finite number of samples, Gibbs sampler tends to produce a too
sparse estimate of E[Z], and a slightly stronger prior is helpful to deal with the sample sparsity
issue. In contrast, the importance sampler avoids such sparsity issue by using a uniform proposal
distribution, which could make the samples well cover all topic dimensions. Thus, a small prior is
sufficient to get good performance, and increasing the prior’s strength could potentially hurt.

Sensitivity to sample size J . For sampling methods, we always need to decide how many samples
(sample size J) to keep to ensure sufficient statistics power. Fig. 2(b) shows the classification accu-
racy of both gMedLDA and iMedLDA with different sample size J when α = 10−2/K and C = 16.
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Figure 2: Sensitivity study of iMedLDA and gMedLDA: (a) classification accuracy with different α
for different topic numbers, (b) classification accuracy with different sample size J , (c) classification
accuracy with different convergence criterion ϵ for gMedLDA, and (d) classification accuracy of
different methods varies as a function of iterations when the topic number is 30.

For gMedLDA, we have tested different values of J for training and prediction. We found that the
sample size in the training process has almost no influence on the prediction accuracy even when it
equals to 1. Hence, for efficiency, we set J to be 1 during the training. It shows that gMedLDA is
relatively stable when J is larger than about 20 at prediction. For iMedLDA, Fig. 2(b) shows that it
becomes stable when the prediction sample size J is larger than 3 × K.

Sensitivity to convergence criterion ϵ. For gMedLDA, we have to judge whether a Markov chain
has reached its stationarity. Relative change in the objective is a commonly used diagnostic to justify
the convergence. We study the influence of ϵ. In this experiment, we don’t bound the maximum
number of iterations and allow the Gibbs sampler to run until the tolerance ϵ is reached. Fig. 2(c)
shows the accuracy of gMedLDA with different values of ϵ. We can see that gMedLDA is relatively
insensitive to ϵ. This is mainly because gMedLDA alternately updates posterior distribution and
Lagrangian multipliers. Thus, it does Gibbs sampling for many times, which compensates for the
influence that each Markov chain has not reached its stationarity. On the other hand, small ϵ values
can greatly slow the convergence. For instance, when the topic number is 90, gMedLDA takes
11,986 seconds on training when ϵ = 10−4 but 1,795 seconds when ϵ = 10−2. These results imply
that we can loose the convergence criterion to speedup training while still obtain a good model.

Sensitivity to iteration. Fig. 2(d) shows the the classification accuracy of MedLDA with various
inference methods as a function of iteration when the topic number is set at 30. We can see that all
the various MedLDA models converge quite quickly to get good accuracy. Compared to fMedLDA,
which uses mean-field variational inference, the two MedLDA models using Monte Carlo methods
(i.e., iMedLDA and gMedLDA) are slightly faster to get stable prediction performance.

5.3 Time efficiency
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Figure 3: Training time.

Although gMedLDA can get good results even for a loosen conver-
gence criterion ϵ as discussed in Sec. 5.2, we set ϵ to be 10−4 for
all the methods in order to get a more objective comparison. Fig. 3
reports the total training time of different models, which includes
two phases – inferring the latent topic representations and training
SVMs. We find iMedLDA is the most efficient, which benefits from
(1) generateing samples outside the iteration loop and uses them for
all iterations; and (2) using the MAP estimates to collapse the sample space of (Θ,Φ) to a “single
sample” for efficiency. In contrast, both gMedLDA and fMedLDA have to iteratively update the
variables or variational parameters. gMedLDA requires more time than fMedLDA but is compara-
ble when ϵ is set to be 0.01. By using the equivalent 1-slack formulation, about 76% of the training
time spent on inference for iMedLDA and 90% for gMedLDA. For prediction, both iMedLDA and
gMedLDA are slightly slower than fMedLDA.

6 Conclusions

We have presented two Monte Carlo methods for MedLDA, a supervised topic model using max-
margin constraints directly on the desired posterior distributions for discovering predictive latent
topic representations. Our methods are based on a novel interpretation of MedLDA as a regular-
ized Bayesian model and the a convex dual formulation to deal with soft-margin constraints. Ex-
perimental results on the 20 Newsgroups data set show that Monte Carlo methods are robust to
hyper-parameters and could yield very competitive results for such max-margin topic models.
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