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Abstract

In this paper, we consider the problem of debugging large pipelines by human
labeling. We represent the execution of a pipeline using a directed acyclic graph
of AND and OR nodes, where each node represents a data item produced by some
operator in the pipeline. We assume that each operator assigns a confidence to
each of its output data. We want to reduce the uncertainty in the output by issuing
queries to a human, where a query consists of checking if a given data item is
correct. In this paper, we consider the problem of asking the optimal set of queries
to minimize the resulting output uncertainty. We perform a detailed evaluation of
the complexity of the problem for various classes of graphs. We give efficient
algorithms for the problem for trees, and show that, for a general dag, the problem
is intractable.

1 Introduction

In this paper, we consider the problem of debugging pipelines consisting of a set of data processing
operators. There is a growing interest in building various web-scale automatic information extraction
pipelines [9, 10, 14, 7], with operators such as clustering, extraction, classification, and deduplica-
tion. The operators are often based on machine learned models, and they associate confidences with
the data items they produce. At the end, we want to resolve the uncertainties of the final output
tuples, i.e., figure out which of them are correct and which are incorrect.

.5Given a fixed labeling budget, we can only inspect a sub- wi w2

set of the output tuples. However, the output uncertainties  cessiiedrages @ @

are highly correlated since different tuples share their lin-

eage. Thus, inspecting a tuple also gives us information

about the correctness of other tuples. In this paper, we

consider the following interesting and non-trivial problem

: given a budget of k tuples, choose the k tuples to inspect =™ @ @ @ @
that minimize the total uncertainty in the output. We will o 2 @ o e
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Section 2. Here, we illustrate the problem using an example. Figure 1: Pipeline Example

Example 1.1. Consider a simple hypothetical pipeline for extracting computer scientists from the
Web that consists of two operators: a classifier that takes a webpage and determines if it is a page
about computer science, and a name extractor that extracts names from a given webpage. Fig. 1
shows an execution of this pipeline. There are two webpages, w1 and wy, output by the classifier.
The extractor extracts entities e| and e; from wy and e3,eq and es from wy. Each operator also gives
a confidence with its output. In Fig. 1, the classifier attaches a probability of 0.9 and 0.8 to pages
w1 and wy. Similarly, the extractor attaches a probability to each of the extractions e to es. The
probability that an operator attaches to a tuple is conditioned on the correctness of its input. Thus,
the final probability of e; is 0.8 x 0.9 = 0.72. Similarly, the final probabilities of e to es are 0.45,
0.8, 0.8 and 0.48 respectively. Note that the uncertainties are correlated, e.g., ez and e4 are either
both correct or both incorrect. We want to choose k tuples to inspect that minimize the total output
uncertainty.

*This work was partly done when the authors were employed at Yahoo! Research.



Graph BEST-1 INCR BEST-K

TREE(2) O(n) O(n) or OPEN (Weakly PTIME)
O(logn)+0(nlogn) preprocessing 2-approximate’: O(nlogn)
TREE O(n) O(n) OPEN (O(rnFFT))
DAG(2,A) or o(n?) PP-hard (Probabilistic Polynomial) PP-Hard
DAG(A) Hard to Approximate Hard to Approximate
DAG(2,V) o(n3) PP-hard, Hard to Approximate PP-Hard, Hard to Approximate

DAG(V) PP-Hard PP-Hard, Hard to Approximate

DAG PP-Hard, Hard to Approximate

Table 1: Summary of Results; "Twice the number of queries to achieve same objective as optimal

If all the data items were independent, we would have queried the most uncertain items, i.e. having
probability closest to 1/2. However, in presence of correlations between the output tuples, the prob-
lem becomes non-trivial. For instance, let us revisit the first example with k = 1, i.e., we can inspect
one tuple. Of the 5 output tuples, es is the most uncertain, since its probability 0.48 is closest to
1/2. However, one might argue that e3 (or e4) is more informative item to query, since the extractor
has a full confidence on e3. Thus, e3 is correct iff w, is correct (i.e. the classifier was correct on
wp). Resolving e3 completely resolves the uncertainty in wp, which, in turn, completely resolves
the uncertainty in e4 and reduces the uncertainty in es. The argument holds even when the extractor
confidence in e3 is less than 1 but still very high. In general, one can also query intermediate nodes
in addition to the output tuples, and choosing the best node is non-trivial.

In this paper, we consider the general setting of a data pipeline given by a directed acyclic graph
that can capture both the motivating scenarios. We define a measure of total uncertainty of the final
output based on how close the probabilities are to either 0 or 1. We give efficient algorithms to
find the set of data items to query that minimizes the total uncertainty of the output, both under
interactive and batch settings.

1.1 Related Work

Our problem is an instance of active learning [27, 13, 12, 17, 2, 15, 5, 4, 3] since our goal is to infer
probability values of the nodes being true in the DAG, by asking for tags of example nodes. The
metric that we use is similar to the square loss metric. However, our problem has salient differences.
Unlike traditional active learning where we want to learn the underlying probabilistic model from
iid samples, in our problem, we already know the underlying model and want to gain information
about non-iid items with known correlations. This makes our setting novel and interesting.

Our DAG structure is a special case of Bayesian networks [6]. A lot is known about general bayes-
net inference [21]. For instance, MAP inference given evidence is NPPP-complete [24] (approxi-
mate inference is NP-complete [1]), inferring whether the probability of a set of variables taking a
certain values given evidence about others is > 0 is NP-complete [8], is > ¢ is PP-complete [22],
while finding its values is #P-complete [26]. However, these results do not apply to our problem set-
ting. In our setting, we are given a set of non-iid items whose correlatations are given by a Bayesian
network with known structure and probabilities. We want to choose a subset of items, conditioned
on which, the uncertinty of the remaining items is minimized.

Our work is closely related to the field of active diagnosis [28, 19, 20], where the goal is to infer
the state of unknown nodes in a network by selecting suitable “test probes”. From this field, the
most closely related work is that by Krause and Guestrin [19], which considers minimization of
uncertainty in a Bayesian network. In that work, the goal is to identify a subset of variables in a
graphical model that would minimize the joint uncertainty of a target set of variables. Their primary
result is a proof of submodularity under suitable independence assumptions on the graphical model
which is then used to derive an approximation algorithm to pick variables. In our problem setting
submodularity does not hold, and hence the techniques do not apply. On the other hand, since our
graphical model has a specific AND/OR structure, we are able to concretely study the complexity
of the algorithms. Our work is also related to the work on graph search [23], where the goal is to
identify hidden nodes while asking questions to humans. Since the target applications are different,
the underlying model in that work is less general.

2 Problem Statement

Execution Graph: Let G be a directed acyclic graph (dag), where each node » in G has a label from
the set {A,V} and a probability p(n). We call such a graph a probabilistic and-or dag. We denote



the class of such graphs as DAG. We represent the results of an execution of a pipeline of operators
using a probabilistic and-or dag.

The semantics of G € DAG is as follows. Each node in G represents a data item. The parents of a
node n, i.e. the set of nodes having an outgoing edge to n, denote the set of data items which were
input to the instance of the operator that produced n. We use parent(n) to denote the parents of n.
The probability p(n) denotes the probability that the data item n is correct conditioned on parent(n)
being correct. If n has label A, then it requires all the parents to be correct. If n has label V, it
requires at least one parent to be correct. We further assume that, conditioned on the parents being
correct, nodes are correct independently.

To state the semantics formally, we associate a set of independent Boolean random variables X (n)
for each node n in G with probability p(n). We also associate another set of random variables
Y (n), which denotes whether the result at node n is correct (unconditionally). For a A node, Y (n)
is defined as: Y (n) = X (1) A A\yueparent(n) Y (m). For a v node, Y (n) is defined as: Y (n) = X(n) A
Vmeparent(n) Y(m)

When G is a tree, i.e., all nodes have a single parent, the labels of nodes do not have any effect,
since Y (n) is the same for both A and V nodes. In this case, we simply treat G as an unlabeled
tree. For instance, Figure 1 denotes the (unlabeled) tree for the pipeline given in Example 1.1. Thus
probabilistic and-or dags provide a powerful formalism to capture data pipelines in practice such as
the one in Example 1.1.

Output Uncertainty: Let L denote the set of leaves of G, which represent the final output of the
pipeline. We want all the final probabilities of L to be close to either O or 1, as the closer the
probability to 1/2, the more uncertain the correctness of the given node is. Let f(p) denote some
measure of uncertainty of a random variable as a function of its probability p. Then, we define the
total output uncertainty of the DAG as

1=Y f(Pr(Y(n))) (1

neL
Our results continue to hold when different n € L are weighted differently, i.e., we use a weighted
version of Eq. (1). We describe this simple extension in the extended technical report [11].

Now, our goal is to query a set of nodes Q that minimize the expected total output uncertainty
conditioned on observing Q. We define this as follows. Let Q = {/1,l»,---,l;} be a set of nodes.

Given v = {vy, -+, } € {0,1}*, we use Q = v to denote the event ¥ (I;) = v; for each i. Then, define

Q)= ) Pr(@=v)) f(Pr(Y(n)|Q=V)) ()

ve{0,1} neL

The most basic version of our problem is following.
Problem 1 (Best-1). Given a G € DAG, find the node q that minimizes the expected uncertainty

1({4})-

A more challenging question is the following:
Problem 2 (Best-k). Given a G € DAG, find the set of nodes Q of size k that minimizes I(Q).

In addition to this, we also consider the incremental version of the problem defined as follows.
Suppose we have already issued a set of queries Qp and obtained a vector vy of their correctness
values. Given a new set of queries, we define the conditioned uncertainty as 1(Q | Qo = vo) =
YvPr(Q=v]|Qo=vy)Y,er f(Pr(Y(n) | 0 =vAQy=vy)). We also pose the following question:

Problem 3 (Incr). Given a G € DAG, and a set of already issued queries Qo with answer vy,
find the best node q to query next that minimizes I({q} | Qo = vy).

In this work, we use the uncertainty metric given by

f(p)=p(1-p) 3)
Thus, f(p) is minimized when p is either 0 or 1, and is maximum at p = 1/2. Note that f(p) =
1/4—(1/2— p)?. Hence, minimizing f(p) is equivalent to maximizing the squares of differences
of probabilities with 1/2. We call this the L? metric. There are other reasonable choices for the
uncertainty metric, e.g. L! or entropy. The actual choice of uncertainty metrics is not important for
our application. In the technical report [11], we show that using any of these different metrics, the
resulting solutions are “similar” to each other.

Our uncertainty objective function can be shown to satisfy some desirable properties, such as:



Theorem 2.1 (Information Never Hurts). For any sets of queries Q1, Q2, I(Q1) > 1(Q1UQ»)

Thus, expected uncertainty cannot increase with more queries. Further, the objective function / is
neither sub-modular nor super-modular. These results continue to hold when f is replaced with
other metrics (Sec. 6). Lastly, for the rest of the paper, we will assume that the query nodes Q are
selected from only among the leaves of G. This is only to simplify the presentation. There is a
simple reduction of the general problem to this problem, where we attach a new leaf node to every
internal node, and set their probabilities to 1. Thus, for any internal node, we can equivalently query
the corresponding leaf node (we will need to use the weighted form of the Eq. (1), described in the
extended technical report [11], to ensure that new leaf nodes have weight 0 in the objective function.)

3 Summary of main results

We first define class of probabilistic and-or dags. Let DAG(A) and DAG(V) denote the subclasses of
DAG where all the node labels are A and V respectively. Let DAG(2,A) and DAG(2,V) denote the
subclasses where the dags are further restricted to depth 2. (We define the depth to be the number of
nodes in the longest root to leaf directed path in the dag.) Similarly, we define the class TREE where
the dag is restricted to a tree, and TREE(d), consisting of depth-d trees. For trees, since each node
has a single parent, the labels of the nodes do not matter.

We start by defining relationships between expressibility of each of these classes. Given any
D1,D, € DAG, we say that D; = D if they have the same number of leaves, and define the same
joint probability distribution on the set of their leaves. Given two classes of dags %] and %>, we say
) C 6, if for all D| € €}, there is a D, € % s.t. D, is polynomial in the size of D; and Dy = D;.

Theorem 3.1. The following relationships exist between different classes:

TREE(2) C TREE C DAG(2,A) = DAG(A) C DAG(2,V) C DAG(V) C DAG

Table 1 shows the complexity of the three problems as defined in the previous section, for different
classes of graphs. The parameter n is the number of nodes in the graph. While the problems are
tractable, and in fact efficient, for trees, they become hard for general dags. Here, PP denotes the
complexity class of probabilistic polynomial time algorithms. Unless P = NP, there are no PTIME
algorithms for PP-hard problems. Further, for some of the problems, we can show that they cannot

. e 1— .. .
be approximated within a factor of 2" * for any positive constant € in PTIME.

4 Best-1 Problem

We start with the most basic problem: given a probabilistic DAG G, find the node to query that min-
imizes the resulting uncertainty. We first provide PTIME algorithms for TREE(2), TREE, DAG(A),
and DAG(2,V) (Recall that as we saw earlier, DAG(2,V) subsumes DAG(A).) Subsequently, we
show that finding the best node to query is intractable for DAG(V) of depth greater than 2, and is
thus intractable for DAG as well. For TREE and DAG(A), the expression for Y (n) can be rewritten
as the following: Y (n) = A,,canc(n) X (m), where anc(n) denotes the set of ancestors of n, i.e., those
nodes that have a directed path to n, including n itself. This “unrolled” formulation will allow us to
compute the probabilities ¥ (x) = 1 easily.

41 TREE(2)

Consider a simple tree graph G with root r, having p(r) = p,, and having children [y, -- I, with
p(l;) = p;i. Given a node x, let e, denote the event Y (x) = 1, and &, denote the event that ¥ (x) = 0.
We want to find the leaf g that minimizes I({g}), where:

1({g}) =Y Pr(eq) f(Pr(e; | eq)) +Pr(eq) f(Pr(e; | eg)) )

leL

By a slight abuse of notation, we will use /(g) to denote the quantity I({g}). It is easy to see the
following (let I # q):

Pr(eq) = prpy, Pr(e; | eq) = pi, Pr(e; | 2g) = prpi(1—pg) /(1= prpy)
Substituting these expressions back in Eq. (4), and assuming f(p) = p(1 — p), we get the following:

Hg)="Y., prpgpi(1=pi)+prpi(1 = pg)(1 = pepi(1=pg) /(1= prpy))
1eLi#q



‘We observe that it is of the form

Fo(pg:pr) + Fi(pg:pr) Y. 01+ Fa(pg, pr) Y 7 )
1 1

where Fo, Fi,F> are small rational polynomials over p, and p,. This immediately gives us a linear
time algorithm to pick the best g. We first compute }; p; and }, pl2, and then compute the objective
function for all g in linear time.

Now we consider the case when G is any general tree with the set of leaves L. Recall that e, is the
event that denotes Y (x) = 1. Denote the probability Pr(ey) by P,. Thus, P is the product of p(y)
over all nodes y that are the ancestors of x (including x itself). Given nodes x and y, let Ica(x,y)
denote the least common ancestor of x and y. Our objective is to find g € L that minimizes Eq. (4).
The following is immediate:

b
Plca(l,q)

Pl(l - Pq/Plca(l,q))

Pr(eq) = Fy Pr(e; [ eq) = 1-P,

Pr(es | ) =

However, if we directly plug this in Eq.(4), we don’t get a simple form analogous to Eq.(5). Instead,
we group all the leaves into equivalence classes based on their lowest common ancestor with g as
shown in Fig. 2.

Let ay,---,a, be the set of ancestors of g. Consider all leaves in the set L; such that their low-
est common ancestor with ¢ is a;. Given a node x, let S(x) denote the sum of Pl2 over all leaves
[ reachable from x. If we sum Eq. (4) over all leaves in L;, we get the following expression:

2
—(S(a;) —S(ai-1)) (PquPai 2P’1Pai) i Z P

Pazl (1 - PQ) leL; e
Define A (a;) = S(a;) — S(a;_1) and Ay (a;) = (S(a;) — O
S(ai-1)) 1;2211,[ . We can write the above expression as:
1 q L L2 Ld
- Ay (ai) — Mp(ai)+ Y P Figure 2: Equivalence Classes of Leaves
1- Pq 1— P‘I leL;
Summing these terms over all the ancestors of g, we
get
1 P,
H)=—1> ¥ M@-r ¥ M@+LA
9 acanc(q) 9 acanc(q) leL
4.2 TREE

Our main observation is that we can compute I(g) for all leaves together in time linear in the size
of G. First, using a single top-down dynamic programming over the tree, we can compute Py for all
nodes x. Next, using a single bottom-up dynamic programming over G, we can compute S(x) for all
nodes x. In the third step, we compute A (x) and A; (x) for all nodes in the tree. In the fourth step, we
compute Y eanc(x) Ai(x) for all nodes in the graph using another top-down dynamic programming.
Finally, we scan all the leaves and compute the objective function using the above expression. Each
of the 5 steps runs in time linear in the size of the graph. Thus, we have

Theorem 4.1. Given a tree G with n nodes, we can compute the node q that minimizes 1(q) is time
O(n).

43 DAG(2,V)

We now consider DAG(2,V). As before, we want to find the best node ¢ that minimizes /(g) as
given by Eq. (4). However, the expressions for probabilities Pr(e,) and Pr(e; | ¢,) are more complex
for DAG(2,V). First, note that P, i.e., the probability that Pr(Y(I) = 1) is computed as follows:
P=p(l)x(1- [Leepareniy (1 — p(x))). The probability that at least one of the shared ancestors
of / and g are true is: P4 = 1 — [ce parent (1)nparent(q) (1 — P(x)). And the probability that one of the
unique ancestors of / is true is: Py = 1 — [ce parent 1)\ parent(q) (1 — P(x)) Then, the following are



immediate:

Pr(e,) = P,
. p(l)-p(q)- (1J17q+(1 *Pl,q) ‘Pl\q 'Pq\l)
Pr(ey | e;) = B
_ P (=p)+p()-plg) (1 =Pg) (1 —Png) - Ppy
Pr(ey | &) =

Note that P}, P, 4, P4 can be computed for one /,q pair in time O(n) and thus for all /,¢ in time

O(n?). Subsequently, finding the best candidate node would require O(n?) time, giving us an overall
O(n?) algorithm to find the best node.

Theorem 4.2. Given G € DAG(2,V) with n nodes, we can compute q that minimizes 1(q) is time
o(n?).

Since every DAG(A) can be converted into to one in DAG(2, V) in O(n?) (see [11]), we get:

Theorem 4.3. Given G € DAG(A) with n nodes, we can compute q that minimizes 1(q) is time
on?).

44 DAG(V)

Theorem 4.4 (Hardness of Best-1 for DAG(V)). The best-1 problem for DAG(V) is PP-Hard.

We use a reduction from the decision version of the #P-Hard monotone-partitioned-2-DNF prob-
lem [25]. The proof can be found in the extended technical report [11]. Thus, incremental and best-k
problems for DAG(V) are PP-Hard as well. As a corollary from Theorem 3.1 we have:

Theorem 4.5 (Hardness of Best-1 for DAG). The best-1 problem for DAG is PP-Hard.

This result immediately shows us that the incremental and best-k problems for DAG are PP-Hard.
However, we can actually prove a stronger result for DAG, i.e., that they are hard to approximate. We
use a weakly parsimonious reduction from the #P-Hard monotone-CNF problem. Note that unlike
the partitioned-2-DNF problem (used for the reduction above), which admits a FPRAS (Fully Poly-
nomial Randomized Approximation Scheme) [18], monotone-CNF is known to be hard to approx-
imate [26]. In our proof, we use the fact that repeated applications of an approximation algorithm
for best-1 for DAG would lead to an approximation algorithm for monotone-CNF, which is known
to be hard to approximate. This result is shown in the extended version [11].

Theorem 4.6 (Inapproximability for DAG). The best-1 problem for DAG is hard to approximate.

5 Incremental Node Selection

In this section, we consider the problem of picking the next best node to query after a set of nodes
Qo have already been queried. We let vector vy reflect their correctness values. We next pick a
leaf node ¢ that minimizes I({g} | Qo = vo). Again, by slightly abusing notation, we will write the
expression simply as I(q | Qp = vp).

In this section, we first consider TREE(2) and TREE. Recall from the previous section that the in-
cremental problem is intractable for DAG(V). Here, we prove that incremental picking is intractable
for DAG(A) itself.

5.1 TREE

We want to extend our analysis of Sec. 4 by replacing Pr(ey) by Pr(ex | Qo = vo) and Pr(e, | ey)
by Pr(ex | ey A Qo = vo). We will show that, conditioned on Qg = vy, the resulting probability
distribution of the leaves can again be represented using a tree. The new tree is constructed as
follows.

Given Qg = vy, apply a sequence of transformations to G € TREE, one for each go € Qp. Suppose
the value of gop = 1. Then, for each ancestor a of g including itself, set p(a) = 1. If gy = 0, then for

1Py /Pa
TPy,

each ancestor « including itself, change its p(a) to p(a) . Let all other probabilities remain

the same.
Theorem 5.1. Let G’ be the tree as defined above. Then, I(q | Qo = Vo) on G is equal to I1(q) on G’

Thus, after each query, we can incorporate the new evidence by updating the probabilities of all the
nodes along the path from the query node to the root. Thus, finding the next best node to query can
still be computed in linear time.



5.2 TREE(2)

For G € TREE(2), the above algorithm results in the following tree transformation. If a leaf ¢ is
queried, and the result is 1, then p(r) and p(q) are set to 1. If the result is 0, p(q) is set to 0 and p(r)
: pr(1—-pg)

is set to ﬁ.

Instead of using Eq. (5) to compute the next best in linear time, we can devise a more efficient
scheme. Suppose we are given all the leaf probabilities in sorted order (or if we sort them initially).
Then, we can subsequently compute the leaf g that minimizes Eq. (5) in O(logn) time: Consider the
rational polynomials Fy, F; and F,. For a fixed p,, Y, p;, and }; plz, this expression can be treated as
a rational polynomial in a single variable p,. If we take the derivative, the numerator is a quartic in
Dg- Thus, it can have at most four roots. We can find the roots of a quartic using Ferrari’s approach
in constant time [16]. Using 4 binary searches, we can find the two p, closest to each of these roots
(giving us 8 candidates for p,, plus two more which are the smallest and the largest p,), and evaluate
I(g) for each of those 10 candidates. Thus, finding the best ¢ takes O(logn) time.

Now, given each new evidence (i.e., the answer to each subsequent query), we can update the p,
probability and the sum Y, pl2 in constant time. Given the new polynomial, we can find the new set
of roots, and using the same technique as above, find the next best ¢ in O(logn) time.

Theorem 5.2. [fthe p values of the leaf nodes are provided in sorted order, then, for a Depth-2 tree,
the next best node to query can be computed in O(logn).

53 DAG(N)

For DAG(A), while we can pick the best-1 node in O(r’) time, we have the surprising result that
the problem of picking subsequent nodes become intractable. The intuition is that unlike trees, after
conditioning on a query node, the resulting distribution can no longer be represented using another
dag. In particular, we show that given a set S of queried nodes, the problem of finding the next best
node is intractable in the size of S. We use a reduction from the monotone-2-CNF problem.

Theorem 5.3 (PP-Hardness of Incr. for DAG(A)). The incremental problem in DAG(A) is PP-Hard.

Our reduction, shown in in the extended technical report [11], is a weakly parsimonious reduction
involving monotone-2-CNF, which is known to be hard to approximate, thus we have the following
result:

Theorem 5.4 (Inapproximability for DAG(A)). The Incremental problem for DAG(A) is hard to
approximate.

The above result, along with Theorem 3.1, implies that DAG(2, V) is also PP-Hard.

6 Best-K

In this section, we consider the problem of picking the best k nodes to minimize uncertainty.
Krause et al. [19] give a logn approximation algorithm for a similar problem under the conditions
of super-modularity: super-modularity states that the marginal decrease in uncertainty when adding
a single query node to an existing set of query nodes decreases as the set becomes larger. Here,
we show that super-modularity property does not hold in our setting, even for the simplest case of

TREE. In fact, for DAG(2,A), the problem is hard to approximate within a factor of 0(2"178) for
any € > 0. We show that TREE(2) admits a weakly-polynomial exact algorithm and a polynomial
approximation algorithm. For general trees, we leave the complexity problem open.

Picking Nodes Greedily: First, we show that picking greedily can be arbitrarily bad. Con-
sider a tree with root having p(r) = 1/2. There are 2n leaves, half with p = 1 and rest with p = 1/2.
If we pick any leaf node with p = 1, the expected uncertainty is n/8. If we pick a node with p=1/2,
the expected uncertainty is 251/16 — 4/16. Thus, if we sort nodes by their expected uncertainty, all
the p = 1 nodes appear before all the p = 1/2 nodes. Consider the problem of picking the best n
nodes. If we pick greedily based on their expected uncertainty, we pick all the p = 1 nodes. How-
ever, all of them are perfectly correlated. Thus, expected uncertainty after querying all p = 1 nodes
is still n/8. On the other hand, if we pick a single p = 1 node, and n — 1 nodes with p = 1/2, the
resulting uncertainty is a constant. Thus, picking nodes greedily can be O(n) worse than the optimal.

Counter-example for super-modularity: Next we show an example from a graph in DAG(2,A)
where super-modularity does not hold. Consider a G € DAG(2,A) having two nodes u and v on



the top layer and three nodes a, b, and c in the bottom layer. Labels of all nodes are A. Node
u has an edge to a and b, while v has an edge to b and c¢. Let Pr(u) = 1/2, Pr(v) = 1/2, and
Pr(a) = Pr(b) = Pr(c) = 1. Now consider the expected uncertainty /. at node c¢. Super-modularity
condition implies that I.({b,a}) — I.({b}) > I.({a}) — I.({}) (since marginal decrease in expected
uncertainty of ¢ on picking an additional node a should be less for set {} compared to {b}). We
show that this is violated. First note that Pr(Y(c)|Y (a)) is same as Pr(Y(c)) (since Y (a) does not
affect Y (v) and Y (¢)). Thus expected uncertainty at ¢ is unaffected by conditioning on a alone, and
thus I.({a}) = I.({}). On the other hand, if Y(b) =0 and Y (a) = 1 then Y (c¢) = 0 (since Y (a) = 1
implies Y (#) = 1 which together with Y (b) = 0 implies Y (v) = 0 and Y (c) = 0). This can be used
to show that conditioned on Y (b), expected uncertainty in ¢ drops when conditioning on Y (a). Thus
the term I.({b,a}) — I.({b}) is negative, while we showed that I.({a}) — I.({}) is 0. This violates
the super-modularity condition.

The above example actually shows that super-modularity is violated on DAG(A) for any choice of
metric f in computing expected uncertainty /, as long as f is monotonic decreasing away from 1/2.
When f(p) = p(1 — p), we can show that super-modularity is violated even for trees as stated in the
proposition below.

Proposition 6.1. Let f(p) = p(1 — p) be the metric used in computing expected uncertainty I. Then
there exists a tree T € TREE(d) such that for leaf nodes a , b, and ¢ in T the following holds:

Ic({b7a}) _Ic({b}) < Ic({a}) _Ic({})'

6.1 TREE(2)
We now consider the Best-k problem for TREE(2). As in Section 4, assume the root r with p(r) to be
pr» while the leaves L = {Iy,...,1,} have p(l;) = p;. Let B=Y,c; p>(l). Given a set Q C L, define

PQ)=[]r0) S1(0) =Y, p()(1=p(1)) $(0) =Y. ()
leQ leQ leQ

Lemma 6.2. The best set Q of size k is one that minimizes: I'(Q) = —S1(Q) + (B —
$2(0)) e
2 (1=pr)/P(Q)+pr

(The details of this computation is shown in the extended technical report.) It is easy to check that
that the first term is minimized with Q consists of nodes with p(I) closest to 1/2, and the second
term is minimized with nodes with p(/) closest to 1. Intuitively, the first term prefers nodes that are
as uncertain as possible, while the second term prefers nodes that reveal as much about the root as
possible. This immediately gives us a 2-approximation in the number of queries : by picking at most
2k nodes, k closest to 1/2 and k closest to 1, we can do at least as well as the optimal solution for
best-k.

Exact weakly-polynomial time algorithm: Note also that as k increases, P(Q) — 0, and the second
term vanishes. This also makes intuitive sense, since the second term prefers nodes that reveal more
about the root, and once we use sufficiently many nodes to infer the correctness of the root, we do
not get any gain from asking additional questions. Thus, we set a constant ¢, depending on the p;,
such that if £ < ¢, we consider all possible choices of k queries, and if k > c¢;, we may simply pick
the k largest p;, because the second term would be very small. We describe this algorithm along
with the proof in the extended technical report [11].

6.2 DAG(A):
Theorem 6.3 (PP-Hardness of Incr. for DAG(A)). The best-k problem in DAG(A) is PP-Hard.

The proof can be found in the extended technical report [11]. Our reduction is a weakly parsimo-
nious reduction involving monotone-partitioned-2-CNF, which is known to be hard to approximate,
thus we have the following result:

Theorem 6.4 (Inapproximability for DAG(A)). The best-k problem for DAG(A) is hard to approxi-
mate.

7 Conclusion

In this work, we performed a detailed complexity analysis for the problem of finding optimal set
of query nodes for various classes of graphs. We showed that for trees, most of the problems are
tractable, and in fact quite efficient. For general dags, they become hard to even approximate. We
leave open the complexity of the best-k problem for trees.
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