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Abstract

This paper proposes a novel image representation called a Graphical Gaussian
Vector (GGV), which is a counterpart of the codebook and local feature matching
approaches. We model the distribution of local features as a Gaussian Markov
Random Field (GMRF) which can efficiently represent the spatial relationship
among local features. Using concepts of information geometry, proper parameters
and a metric from the GMRF can be obtained. Then we define a new image feature
by embedding the proper metric into the parameters, which can be directly applied
to scalable linear classifiers. We show that the GGV obtains better performance
over the state-of-the-art methods in the standard object recognition datasets and
comparable performance in the scene dataset.

1 Introduction

The Bag of Words (BoW) [7] is the de facto standard image feature for the image categorization.
In a BoW, each local feature is assigned to the nearest codeword and an image is represented by
a histogram of the quantized features. Several approaches inspired by a BoW have been proposed
in recent years [9], [23], [28], [27], [29]. While it is well established that using a large number
of codewords improves classification performance, the drawback is that assigning local features to
the nearest codeword is computationally expensive. To overcome this problem, some studies have
proposed building an efficient image representation with a smaller number of codewords [22], [24].
Finding an explicit correspondence between local features is another way of categorizing images
using a BoW [4], [12], [26], and this approach has been improved by representing a spatial layout
of local features as a graph [11], [2], [16], [8]. Explicit correspondences between features have an
advantage over a BoW as information loss in the vector quantization can be avoided. However, the
drawback with this approach is that the identification of corresponding points with minimum dis-
tortion is also computationally expensive. Therefore, the aim of our research is to build an efficient
image representation without using codewords or explicit correspondences between local features,
while still achieving high classification accuracy.

Since having a spatial layout of local features is important for an image to have semantic meaning,
it is natural that embedding spatial information into an image feature improves classification perfor-
mance [18], [5], [14], [17]. Several approaches take advantage of this fact, ranging from local (e.g.,
SIFT) to global (e.g., Spatial Pyramid). Meanwhile, we will focus on the spatial layout of local
features, which is the midlevel of the spatial information.

In this paper, we model an image as a graph representing the spatial layout of local features and
define a new image feature based on this graph, where a proper metric is embedded into the feature.
We show that the new feature provides high classification accuracy, even with a linear classifier.
Specifically, we model an image as a Gaussian Markov Random Field (GMRF) whose nodes cor-
respond to local features and consider the GMRF parameters as the image feature. Although the
GMRF is commonly used for image segmentation, it is rarely used in modern image categorization
pipelines despite being an effective way of modeling the spatial layout. In order to extract the repre-
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sentative feature vector from the GMRF, the choice of coordinates for the parameters and the metric
between them needs to be carefully made. We define the proper coordinates and the metric from
an information geometry standpoint [1] and derive an optimal feature vector. The resultant feature
vector is called a Graphical Gaussian Vector.

The contributions of this study are summarized as follows: 1) A novel and efficient image feature
is developed by utilizing the GMRF as a tool for object categorization. 2) This approach is imple-
mented by developing the Graphical Gaussian Vector feature, which is based on the GMRF and the
information geometry. 3) Using standard image categorization benchmarks, we demonstrate that
the proposed feature has better performance over the state-of-the-art methods, even though it is not
based on mainstream modules (such as codebooks and correspondence between local features). To
the best of our knowledge, this is the first image feature for the object categorization that utilizes
the expectation parameters of the GMRF with its Fisher information metric, and achieves a level of
accuracy comparable to that of the codebook and local feature matching approaches.

2 Graphical Gaussian Vector

2.1 Overview of Proposed Method
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Figure 1: Overview of image feature extraction based on a multivariate GMRF.

In this section, we present an overview of our method. Initially, local features {xi ∈ R
d}M

i=1 are
extracted using a dense sampling strategy (Fig. 1(a)). We then use a multivariate GMRF to model
the spatial relationships among local features (Fig. 1(b)). The GMRF is represented as a graph
G(V, E), whose vertices V and edges E correspond to local features and the dependent relationships
between those features, respectively. Let the vector x be a concatenation of local features in V and
let ξj be a parameter of the GMRF of an image Ij , the image Ij can be represented by a probability
distribution p(x; ξj) of the GMRF (Fig. 1(c)). We consider the parameter ξj of the GMRF to
be a feature vector of the image Ij (Fig. 1(d)). Assuming that ξ is a coordinate system, the whole
probability distribution model can be considered as a manifold, where each probability distribution is
represented as a point in that space (Fig. 1(e)). However, because the space spanned by parameters
of a probability distribution is not a Euclidean space, we have to be very careful when choosing
parameters for the probability distribution and the metric among them. We make use of concepts
from the information geometry [1] and extract proper parameters and a metric from the GMRF.
Finally, we define the new image feature by embedding the metric into the extracted parameters to
build an image categorization system with a scalable linear classifier. In the following sections, we
describe this process in more detail.

2.2 Image Model and Parameters

Given M local features {xi ∈ R
d}M

i=1, the aim is to model a probability distribution of the local
features representing the spatial layout of the image using the multivariate GMRF G = (V, E).
First, a vector x is built by concatenating the local features corresponding to the vertices V of the
GMRF. Let {xi}n

i=1 are local features that we are focusing on, we obtain the concatenated vector as
x = (x�

1 · · ·x�
n )� (e.g., Fig. 1(b), where n = 9). Note that the dimensionality of x is nd and does

not depend on the number of local features M , the image size, or the aspect ratio. However, since
all results valid for a scalar local feature are also valid for a multivariate local feature, in this section
we consider the dimensionality of local features is 1 (d = 1) for simplicity. That is dim(x) = n.
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Let μ = E[x], P = E[(x − μ)(x − μ)�], and J = P−1. A random vector x is called a Gaussian
Markov Random Field (GMRF) with respect to G = (V, E), if and only if its density has the form
p(x) = (2π)−n/2|J |1/2 exp(− 1

2 (x − μ)�J(x − μ)) and Jij = 0 for all {i, j} /∈ E . Because the
Gaussian distribution can be represented as an exponential family, here, we consider an exponential
family as follows:

p(x) = exp
(
θ�φ(x) − Φ(θ)

)
, (1)

where θ are the natural parameters, φ(x) is the sufficient statistic, and Φ(θ) =
log
∫

exp(θ�φ(x))dx is the log-normalizer. θ and φ(x) of the GMRF are obtained as [15]:

θi = hi, θii = −1
2
Jii, θjk = −Jjk, (i ∈ V, {j, k} ∈ E), (2)

φi(x) = xi, φii(x) = x2
i , φjk(x) = xjxk, (i ∈ V, {j, k} ∈ E), (3)

where h = Jμ. The expectation parameter η = E[φ(x)] is an implicit parameterization belonging
to the exponential family. The expectation parameters are obtained as [15]:

ηi = μi, ηii = Pii + μ2
i , ηjk = Pjk + μjμk, (i ∈ V, {j, k} ∈ E). (4)

The natural and expectation parameters can be transformed into each other [1]. They are called
mutually dual as each is the dual coordinate system of the other. The two coordinate systems are
closely related through the Fisher information matrices (FIMs) Gij(θ) and G∗ij(η): Gij(θ) = ∂ηi

∂θj ,

and G∗ij(η) = ∂θi

∂ηj
, where G∗(η) = G−1(θ). If we take the natural parameters or the expectation

parameters as a coordinate system for an exponential family, a flat structure can be realized [1].
In particular, θ is called a 1-affine coordinate system, and the space spanned by θ is called 1-flat.
Similarly, η is called a (-1)-affine coordinate system, and the space spanned by η is called (-1)-flat.
Those spaces are similar to a Euclidean space, but we need to be careful that the spaces spanned by
the natural or expectation parameters are different from a Euclidean space, as the metrics vary for
different parameters. We will discuss how to determine the metrics in those spaces in Sections. 2.4
and 2.5.

To summarize this section, the natural and expectation parameters are similar and interchangeable
through the FIMs. By using these parameters, we can obtain flatness similar to the Euclidean space.
Although it does not matter whether we choose natural or expectation parameters, we use expecta-
tion parameters (Eq. (4)) as feature vectors because they can be calculated directly from the mean
and covariance of local features. We will see a multivariate extension of the GMRF and its calcula-
tion in the next section.

2.3 Calculation of Expectation Parameters

In this section, we describe the calculations of the expectation parameters of the multivariate GMRF.
First, we define the graph structure of the GMRF. We use star graphs shown in Fig. 2, where
four neighbors (Fig. 2(a)) or eight neighbors (Fig. 2(b)) are usually used. While a graph having
more neighbors is obviously able to represent richer spatial information, the compact structure is
preferable for efficiency. Therefore, we employed the approximated graph structures shown in Fig.
2(c), which represents the vertical and horizontal relationships among local features, and Fig. 2(d),
which represents vertical, horizontal and, diagonal relationships.

(a) (b) (c) (d)
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Figure 2: Structures of the GMRF.

Next, we show a method for estimating the expectation parameters of each image. In practice,
Eq. (4) in a multivariate case can be determined by calculating the local auto-correlations of local
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features. Here we present the detailed calculations of Eq. (4) using Fig. 2(c) as an example. Let
x(rk) ∈ R

d be the local feature at a reference point rk and let ai and aj be the displacement
vectors, which are defined by the structure of the GMRF. Then, the local auto-correlation matrices
are obtained as: Ci,j = 1

NJ

∑
k∈J x(rk+ai)x(rk+aj)�, where NJ is the number of local features

in the image region J . Especially if we define a0 = 0, C0,i = 1
NJ

∑
k∈J x(rk)x(rk + ai)�. Let a

vector concatenating local features in the vertices at the reference point rk be x�
k = (x(rk)�x(rk+

a1)�x(rk + a2)�), P + μμ� is calculated to be:

P + μμ� =
1

NJ

∑
k∈J

xkx�
k =

(
C0,0 C0,1 C0,2

C1,0 C1,1 C1,2

C2,0 C2,1 C2,2

)
. (5)

The expectation parameters of the GMRF depicted in Fig. 2(c) can be obtained as: η =
(μ�

0 μ�
1 μ�

2 f�(C0,0)f�(C1,1)f�(C2,2)g�(C0,1)g�(C0,2))�, where f(·) returns a column vector
consisting of the elements of the upper triangular portion of the input matrix, g(·) returns a column
vector containing all the elements of the input matrix and μi = 1

NJ

∑
k∈J x(rk + ai). Note that

C1,2 is omitted, because there is no edge between the vertices at rk + a1 and rk + a2. In general,
the expectation parameters (Eq. (4)) on the star graph can be calculated by:

η =
(
μ�

0 · · ·μ�
n−1 f�(C0,0) · · · f�(Cn−1,n−1) g�(C0,1) · · · g�(C0,n−1)

)�
, (6)

where n = |V| is the number of vertices. The dimensionality of η is: nd+n(d+1)d/2+(n−1)d2,
where d is the dimensionality of the local feature. Also note that {Ci,j}i�=j∧i,j �=0 can be omitted.

By scanning the image region J (Fig. 2(e)), if we have enough local features, the means {μi}n−1
i=0

and covariance matrices {Ci,i}n−1
i=0 of local features in the region J come to the vector μ0 and matrix

C0,0, respectively. The expectation parameters (Eq. (4)) can be approximated by:

η = (μ�
0 · · ·μ�

0︸ ︷︷ ︸
n

f�(C0,0) · · · f�(C0,0)︸ ︷︷ ︸
n

g�(C0,1) · · · g�(C0,n−1)︸ ︷︷ ︸
n−1

)�. (7)

Equation (7) is calcuated more efficiently than Eq. (6) and comes to the same vector as Eq. (6).
However, in the preliminary experiment, Eq. (6) is better than Eq. (7) in terms of the classification
accuracies. In the following sections, we use Eq. (6) for the expectation parameters.

2.4 Metric

In Section 2.2, we mentioned that the metric varies depending on the parameters. We now derive
a metric between the expectation parameters [1]. Let ds represent the length of the small line-
element connecting η and η + dη. dη is represented by using basis vectors e∗i: dη =

∑
i ηie

∗i.
The squared distance can be calculated by: ds2 = 〈dη, dη〉 =

∑
i,j〈e∗i,e∗j〉dηidηj , where 〈·, ·〉

is the inner product of two vectors. By applying the Taylor expansion to KL divergence between
p(x;η) and p(x;η + dη), ds2 can be represented as follows: ds2 = KL[p(x;η) : p(x;η + dη)] =
1
2dη�G∗dη = 1

2

∑
i,j G∗ijdηidηj , where G∗ is the FIM. By comparing these equations, it is clear

that the metric matrix consisting of the inner products of the basis vectors corresponds to the FIM:

G∗ij = 〈e∗i,e∗j〉. (8)

Thus, the FIM is a proper metric for the feature vectors (the expectation parameters) obtained from
the GMRF.

The Cramér-Rao inequality gives us a better understanding of the FIM. Assuming that η̂ is an un-
biased estimator, the variance-covariance matrix of η̂ satisfies: Var[η̂] ≥ 1

N (G∗)−1. Consequently,
the FIM is considered to be the inverse of the variance of an estimator, making it natural to use the
matrix as a distance metric between the parameters.

2.5 Implementation of Graphical Gaussian Vector

At first, we build the concatenated vector as x = (x�
1 · · ·x�

n )�, where each xi corresponds to
the local feature of the vertex i. By using all training data, the mean μ = E[x] and the precision
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Figure 3: Here V = {x,y,z} and E = {{x,y}, {x,z}}. The dimensionality of the local features is
2 (x = (x1, x2)�,y = (y1, y2)�,z = (z1, z2)�). A vector concatenating the local features in V is
v = (x1, x2, y1, y2, z1, z2)�. Using the training data, we calculate a mean μ and a precision matrix
J of v. Using μ and J , the Fisher information matrix of the full Gaussian family can be calculated
as in (b), whose rows and columns correspond to the elements of the expectation parameters. In (b),
F ∗(η) can be partitioned into the submatrices F ∗

G,G(η), F ∗
G,\G(η), F ∗

\G,G(η) and F ∗
\G,\G(η). The

Fisher information matrix of the GMRF is obtained as shown in (c) using the submatrices of F ∗(η).

matrix J = P−1, P = E[(x − μ)(x − μ)�] are obtained. Since the FIM G∗(η) of the GMRF
is derived from the FIM of the full Gaussian family F ∗(η), we now calculate F ∗(η) with μ and
J . Let e∗i, e∗ij denote the basis vectors corresponding to μi and Pij + μiμj in Eq. (4) respec-
tively. The elements of F ∗(η) are obtained by [20]: F ∗ij(η) = 〈e∗i, e∗j〉 = Jij(1 + μ�Jμ) +∑

k μkJki

∑
k μkJkj , F ∗i,pq(η) = 〈e∗i, e∗pq〉 = −Jpi

∑
k μkJkq − Jqi

∑
k μkJkp, F ∗i,pp(η) =

〈e∗i, e∗pp〉 = −Jpi

∑
k μkJkp, F ∗pq,rs(η) = 〈e∗pq, e∗rs〉 = JpsJqr + JqsJpr, F ∗pq,rr(η) =

〈e∗pq, e∗rr〉 = JprJrq, F ∗pp,rr(η) = 〈e∗pp, e∗rr〉 = 1
2J2

pr.

Next we derive G∗(η) from F ∗(η). F ∗(η) can be partitioned according to the graphs G and \G:

F ∗(η) =
(

F ∗
G,G(η) F ∗

G,\G(η)
F ∗
\G,G(η) F ∗

\G,\G(η)

)
. (9)

A FIM of the GMRF G∗(η) is obtained as the Schur complement of F ∗(η) with respect to the
submatrix F ∗

\G,\G(η) [15]:

G∗(η) = F ∗
G,G(η) − F ∗

G,\G(η)
(
F ∗
\G,\G(η)

)−1

F ∗
\G,G(η). (10)

As these calculations may be complicated, we present a simple example using a GMRF with n = 3
vertices, shown in Fig. 3.

However, G∗(η) is difficult to deal with as it depends on the expectation parameters. Thus, we
approximate the model space using the tangent space at the center point of all training data [20]:
G∗(η) ≈ G∗(ηc) where ηc =

∑N
i=1 ηi, and N is the number of training images. In order to embed

the proper metric into the expectation parameters, we multiply G∗(ηc)1/2 by η:

ζ =
(

F ∗
G,G(ηc) − F ∗

G,\G(ηc)
(
F ∗
\G,\G(ηc)

)−1

F ∗
\G,G(ηc)

)1/2

η. (11)

We call ζ Graphical Gaussian Vector (GGV). This vector is used directly to build sophisticated linear
classifiers.

We have a derivation of GGV, and the algorithm for it is very simple, consisting of the following
three steps: 1) calculation of local auto-correlations of local features; 2) estimation of the expectation
parameters of the GMRF; and 3) embedding the distance metric (the Fisher information metric) into
the expectation parameters. The calculation of GGV is given in Algorithm 1. Before the calculation
of GGV, we have to estimate the FIM of GMRF by decomposing the FIM of the full Gaussian. As a
consequence, we obtain one common FIM for all expectation parameters. In practice, since using all
training data is infeasible to estimate the FIM, we use a subset of local features randomly sampled
from training data. Note that since the calculation of the FIM is done in the preprocessing stage, it
is not necessary to calculate the FIM when extracting GGVs.
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Algorithm 1 Calculation of GGV.
Input: An image region J , and the Fisher information matrix of the GMRF G∗(ηc)
Output: GGV ζ

1. Calculate local auto-correlations of local features:
μi = 1

NJ

∑
k∈J x(rk + ai), Ci,j = 1

NJ

∑
k∈J x(rk + ai)x(rk + aj)�

2. Estimate the expectation parameters:
η = (μ�

0 · · ·μ�
n−1 f�(C0,0) · · · f�(Cn−1,n−1) g�(C0,1) · · · g�(C0,n−1))�

3. Embed the Fisher information metric into the expectation parameters:
ζ = (G∗(ηc))

1/2
η

3 Experiment

We tested our method on the standard object and scene datasets (Caltech101, Caltech256, and
15-Scenes). For the first experiment, we evaluated the effects of the graph structure (i.e. spatial
information) and the FIM. As baseline methods, we used Generalized Local Correlation (GLC)
[19]: ηglc = (μ�

0 f�(C0,0))� without the FIM, Local Auto-Correlation features (LAC) [21], [14]:
ηlac = (μ�

0 f�(C0,0) g�(C0,1) · · · g�(C0,n−1))� without the FIM, and the Global Gaussian with
a center linear kernel (GG) [20]: ηglc with F ∗(ηc). The comparison among these methods are
shown in Table 1. Two types of graph structures were utilized for the GGVs. The first is shown in
Fig. 2(c) (GGV, n = 3), which models a horizontal and vertical spatial layout of the local features.
The second is shown in Fig. 2(d) (GGV, n = 5), which adds diagonal spatial layouts of the features
to Fig. 2(c). We also compared L2 normalized GGVs (i.e., ζ̂ = ζ/||ζ||). To embed the global
spatial information, we used the spatial pyramid representation with a 1×1+2×2+3×3 pyramid
structure.

Table 1: The relationships between GLC, LAC, GG, and GGV in terms of spatial information and
Fisher information metrics.

Method Spatial information Fisher information metric
GLC - -
LAC

√
-

GG -
√

GGV (proposed)
√ √

In the second experiment, we compared GGVs with the Improved Fisher kernel (IFK) [24], [25],
which is the best image representation available at the time of writing. In this experiment, we used
the spatial pyramid representation with a 1×1+2×2+3×1 structure. The number of components
c in GMMs is an important parameter for IFK. We tested GMMs with c = 32, 64, 128, and 256
Gaussians to compute IFKs and compared them with GGVs.

For all datasets, SIFT features were densely sampled and were described for 16 × 16 patches. We
downsized images if their longest side was more than 300 pixels. As the aforementioned features
depend on the dimensionality of the local feature, we reduced its dimensionality using PCA and
compared performance as a function of its new dimensionality. As a linear classifier, we used the
multi-class Passive-Aggressive Algorithm (PA) [6].

3.1 Caltech101

Caltech101 is the de facto standard object-recognition dataset [10]. To evaluate the classification
performance, we followed the most commonly used methodology. Fifteen images were randomly
selected from all 102 categories for training purposes and the remaining images were used for test-
ing. The classification score was averaged over 10 trials.

Before comparison between GGVs and the baselines, we evaluate the sensitivities of the sampling
step of local features. The sampling step is one of the important parameters of GGV, because GGV
calculates auto-correlations of the neighboring local features. In this preliminary experiment, we fix
the number of vertices is 5 (n = 5) and the dimensionality of local feature is 32. We do not use
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Figure 4: A comparison of classification accuracies of: (left) GGV, GLC, LAC and GG; (center)
GGV and IFK with respect to the dimensionality of “local features”; (right) GGV and IFK with
respect to the dimensionality of “image features” in the Caltech101 dataset.

the spatial pyramid. The results are as follows: 56.7 % (step = 4 pixels), 57.7 % (step = 6 pixels) ,
57.7 % (step = 8 pixels) , 57.2 % (step = 10 pixels) , 56.5 % (step = 12 pixels). There is no clear
difference between step sizes of 6 and 8 pixels. Therefore in the following experiments, we use 6
pixels sampling step for local feature extraction.

Figure 4 (left) shows the classification accuracies as a function of the dimensionality of the local
features. A large dimensionality yielded better performance, and the proposed method (GGV) out-
performed the other methods (GLC, LAC, and GG). By comparing GGV with LAC, and GG with
GLC, it is clear that embedding the Fisher information metric improved the classification accuracy
significantly. By comparing GGV with GG, as well as LAC with GLC, it can also be seen that
embedding the spatial layout of local features also improved the accuracy. In a comparison between
the graph structures, the four-neighbor structure (Fig. 2(d)) performed slightly better than the two-
neighbor structure (Fig. 2(c)). If we compare the regular GGVs with the L2 normalized GGVs, we
find that the L2 normalization improved the accuracy by almost 2 %.

In the second experiment, we compared the L2 normalized GGVs with IFKs. The results are shown
in Fig. 4 (center). For all the dimensionalities and numbers of components, GGVs performed better
than IFKs. Fig. 4 (right) shows the classification accuracy as a function of the dimensionality of
the image features which are converted from the results shown in Fig. 4 (center). We see that
GGVs achieved higher accuracy for a lower dimensionality of image features. The results were
also compared against those of leading methods that use a linear classifier. The performance scores
are referenced from the original papers. LLC [27] scored 65.4 % and ScSPM [28] scored 67.0 %,
whereas our method achieved 71.3 % when the dimensionality of the local feature is 32 and the
number of vertices is 5. Therefore, our method is better than the best available methods in this
dataset, despite using a linear classifier and not requiring a codebook or descriptor matching.

3.2 Caltech256

Caltech256 consists of images from 256 object categories [13]. This database is significant for
its large inter-class variability, as well as an intra-class variability greater than that found in Cal-
tech101. To evaluate performance, we followed a commonly used methodology. Fifteen images
were randomly selected from all categories for training purposes and the remaining images were
used for testing. The classification score was averaged over 10 trials.

Figure 5 (left) shows a comparison of classification accuracies of GGV, GLC, LAC and GG. Fig. 5
(center) and (right) show comparisons of the L2 normalized GGVs and IFKs using the Caltech256
dataset with respect to the dimensionality of local features and image features, respectively. The
results show the same trends as for Caltech101. Our method is better than all baseline methods and
IFKs. [24] reported that IFK achieved 34.7% and [27] reported that LLC scored 34.4%, while GGV
obtained 33.4%. However, a fair comparison is difficult because our method used only single-scale
SIFT whereas [24] and [27] used 5-scale SIFT and 3-scale HOG, respectively. It is known that
using multi-scale local features improves classification accuracies (e.g. [3]). To be fair comparison,
we used 3-scale SIFT (patch size = 16 × 16, 24 × 24, 32 × 32) for GGV with n = 5, and L2
normalization. GGV with 3-scale SIFT achieved 36.2% which is better than those leading methods.
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Figure 5: A comparison of classification accuracies of: (left) GGV, GLC, LAC and GG; (center)
GGV and IFK with respect to the dimensionality of “local features”; (right) GGV and IFK with
respect to the dimensionality of “image features” in the Caltech256 dataset.

3.3 15-Scenes

We experimented with 15-Scenes, a commonly used scene classification dataset [18]. We randomly
selected 100 training images for each class and used the remaining samples as test data. We calcu-
lated the mean of the classification rate for each class. This score was averaged over 10 trials, where
the training and test sets were randomly re-selected for each trial. This is the same methodology as
that used in previous studies.
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Figure 6: A comparison of classification accuracies of: (left) GGV, GLC, LAC and GG; (center)
GGV and IFK with respect to the dimensionality of “local features”; (right) GGV and IFK with
respect to the dimensionality of “image features” in the 15-Scenes dataset.

Figure 6 (left) shows a comparison of classification accuracies of GGV, GLC, LAC and GG using
the 15-Scenes dataset. The results show similar trends as for Caltech101 and Caltech256, except
that there is no difference between the scores of the graph structures. In the second experiment,
the results with respect to the dimensionality of local features and image features are shown in
Figs. 6 (center) and (right), respectively. In contrast to the results for Caltech101 and 256, IFKs
scored slightly higher than GGVs (IFK (c = 256, d = 32): 84.0%, GGV (n = 5, d = 32 and
L2 normalized): 83.5%). As the leading method, the spatial Fisher kernel [17] reported the highest
score (88.1%). However, since [17] used 8-scale SIFT descriptors, which provide richer information
than the single-scale SIFT descriptors we used, it is difficult to make a direct comparison.

4 Conclusion

In this paper, we proposed an efficient image feature called a Graphical Gaussian Vector, which uses
neither codebook nor local feature matching. In the proposed method, spatial information about
local features and the Fisher information metric are embedded into a feature by modeling the image
as the Gaussian Markov Random Field (GMRF). Experimental results using three standard datasets
demonstrated that the proposed method offers a performance that is superior or comparable to other
state-of-the-art methods. The proposed image feature calculates the expectation parameters of the
GMRF simply and effectively while maintaining a high classification rate.
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