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Abstract

In search advertising, the search engine needs to select the most profitable adver-
tisements to display, which can be formulated as an instance of online learning
with partial feedback, also known as the stochastic multi-armed bandit (MAB)
problem. In this paper, we show that the naive application of MAB algorithms
to search advertising for advertisement selection will produce sample selection
bias that harms the search engine by decreasing expected revenue and “estima-
tion of the largest mean” (ELM) bias that harms the advertisers by increasing
game-theoretic player-regret. We then propose simple bias-correction methods
with benefits to both the search engine and the advertisers.

1 Introduction

Search advertising, also known as sponsored search, has been formulated as a multi-armed bandit
(MAB) problem [11], in which the search engine needs to choose one ad from a pool of candidate to
maximize some objective (e.g., its revenue). To select the best ad from the pool, one needs to know
the quality of each ad, which is usually measured by the probability that a random user will click on
the ad. Stochastic MAB algorithms provide an attractive way to select the high quality ads, and the
regret guarantee on MAB algorithms ensures that we do not display the low quality ads too many
times.

When applied to search advertising, a MAB algorithm needs to not only identify the best ad (suppose
there is only one ad slot for simplicity) but also accurately learn the click probabilities of the top two
ads, which will be used by the search engine to charge a fair fee to the winner advertiser according
to the generalized second price auction mechanism [6]. If the probabilities are estimated poorly, the
search engine may charge too low a payment to the advertisers and lose revenue, or it may charge
too high a payment which would encourage the advertisers to engage in strategic behavior. However,
most existing MAB algorithms only focus on the identification of the best arm; if naively applied to
search advertising, there is no guarantee to get an accurate estimation for the click probabilities of
the top two ads.

Thus, search advertising, with its special model and goals, merits specialized algorithmic design and
analysis while using MAB algorithms. Our work is a step in this direction. We show in particular that
naive ways of combining click probability estimation and MAB algorithms lead to sample selection
bias that harms the search engine’s revenue. We present a simple modification to MAB algorithms
that eliminates such a bias and provably achieves almost the revenue as if an oracle gives us the
actual click probabilities. We also analyze the game theoretic notion of incentive compatibility (IC)
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and show that low regret MAB algorithms may have worse IC property than high regret uniform
exploration algorithms and that a trade-off may be required.

2 Setting

Each time an user visits a webpage, which we call an impression, the search engine runs a gener-
alized second price (SP) auction [6] to determine which ads to show to the user and how much to
charge advertisers if their ads are clicked. We will in this paper suppose that we have only one ad
slot in which we can display one ad. The multiple slot setting is more realistic but also much more
complicated to analyze; we leave the extension as future work. In the single slot case, generalized
SP auction becomes simply the well known second price auction, which we describe below.

Assume there are n ads. Let bk denote the bid of advertiser k (or the ad k), which is the maximum
amount of money advertiser k is willing to pay for a click, and ρk denote the click-through-rate
(CTR) of ad k, which is the probability a random user will click on it. SP auction ranks ads according
to the products of the ad CTRs and bids. Assume that advertisers are numbered by the decreasing
order of biρi: b1ρ1 > b2ρ2 > · · · > bnρn. Then advertiser 1 wins the ad slot, and he/she need to pay
b2ρ2/ρ1 for each click on his/her ad. This payment formula is chosen to satisfy the game theoretic
notion of incentive compatibility (see Chapter 9 of [10] for a good introduction). Therefore, the
per-impress expected revenue of SP auction is b2ρ2.

2.1 A Two-Stage Framework

Since the CTRs are unknown to both advertisers and the search engine, the search engine needs to
estimate them through some learning process. We adopt the same two-stage framework as in [12, 2],
which is composed by a CTR learning stage lasting for the first T impressions and followed by a SP
auction stage lasting for the second Tend − T impressions.

1. Advertisers 1, ..., n submit bids b1, ..., bn.

2. CTR learning stage:
For each impression t = 1, ..., T , display ad kt ∈ {1, ..., n} using MAB algorithmM.
Estimate ρ̂i based on the click records from previous stage.

3. SP auction stage:
For t = T + 1, ..., Tend, we run SP auction using estimators ρ̂i: display ad that maximizes
bkρ̂k and charge b(2)ρ̂(2)

ρ̂(1)
. Here we use (s) to indicate the ad with the s-th largest score biρ̂i.

One can see that in this framework, the estimators ρ̂i’s are computed at the end of the first stage
and keep unchanged in the second stage. Recent works [2] suggested one could also run the MAB
algorithm and keep updating the estimators until Tend. However, it is hard to compute a fair payment
when we display ads based using a MAB algorithm rather than the SP auction, and a randomized
payment is proposed in [2]. Their scheme, though theoretically interesting, is impractical because
it is difficult for advertisers to accept a randomized payment rule. We thus adhere to the above
framework and do not update ρ̂i’s in the second stage.

It is important to note that in search advertising, we measure the quality of CTR estimators not by
mean-squared error but by criteria important to advertising. One criterion is to the per-impression
expected revenue (defined below) in rounds T + 1, ..., Tend. Two types of estimation errors can
harm the expected revenue: (1) the ranking may be incorrect, i.e. arg maxk bkρ̂k 6= arg max bkρk,
and (2) the estimators may be biased. Another criterion is incentive compatibility, which is a more
complicated concept and we defer its definition and discussion to Section 4. We do not analyze
the revenue and incentive compatibility properties of the first CTR learning stage because of its
complexity and brief duration; we assume that Tend >> T .
Definition 2.1. Let (1) := arg maxk bkρ̂k, (2) := arg maxk 6=(1) bkρ̂k. We define the per-

impression empirical revenue as r̂ev := ρ(1)
b(2)ρ̂(2)
ρ̂(1)

and the per-impression expected revenue as
E[r̂ev] where the expectation is taken over the CTR estimators. We define then the per-impression
expected revenue loss as b2ρ2 − E[r̂ev], where b2ρ2 is the oracle revenue we obtain if we know the
true click probabilities.
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Choice of Estimator We will analyze the most straightforward estimator ρ̂k = Ck

Tk
where Tk is

the number of impression allocated to ad k in the CTR learning stage and Ck is the number of clicks
received by ad k in the CTR learning stage. This estimator is in fact biased and we will later propose
simple improvements.

2.2 Characterizing MAB Algorithms

We analyze two general classes of MAB algorithms: uniform and adaptive. Because there are many
specific algorithms for each class, we give our formal definitions by characterizing Tk, the number
of impressions assigned to each advertiser k at the end of the CTR learning stage.
Definition 2.2. We say that the learning algorithmM is uniform if, for some constant 0 < c < 1,
for all k, all bid vector b, with probability at least 1−O

(
n
T

)
:

Tk ≥
c

n
T.

We next describe adaptive algorithm which has low regret because it stops allocating impressions to
ad k if it is certain that bkρk < maxk′ bk′ρk′ .
Definition 2.3. Let b be a bid vector. We say that a MAB algorithm is adaptive with respect to b,
if, with probability at least 1−O

(
n
T

)
, we have that:

T1 ≥ cTmax and
(
c′
b2k
∆2
k

lnT

)
≥ Tk ≥ min

(
cTmax,

4b2k
∆2
k

lnT

)
for all k 6= 1

where ∆k = b1ρ1− bkρk and c < 1, c′ are positive constants and Tmax = maxk Tk. For simplicity,
we assume that c here is the same as c in Definition 2.2, we can take the minimum of the two if they
are different.

Both the uniform algorithms and the adaptive algorithms have been used in the search advertising
auctions [5, 7, 12, 2, 8]. UCB (Uniform Confidence Bound) is a simple example of an adaptive
algorithm.
Example 2.1. UCB Algorithm. The UCB algorithm, at round t, allocate the impression to the ad
with the largest score, which is defined as sk,t ≡ bkρ̂k,t + γbk

√
1

Tk(t) log T .

where Tk(t) is the number of impressions ad k has received before round t and ρ̂k,t is the number
of clicks divided by Tk(t) in the history log before round t. γ is a tuning parameter that trades off
exploration and exploitation; the larger γ is, the more UCB resembles uniform algorithms. Some
version of UCB algorithm uses log t instead of log T in the score; this difference is unimportant and
we use the latter form to simplify the proof.

Under the UCB algorithm, it is well known that the Tk’s satisfy the upper bounds in Definition 2.3.
That the Tk’s also satisfy the lower bounds is not obvious and has not been previously proved.
Previous analyses of UCB, whose goal is to show low regret, do not need any lower bounds on Tk’s;
our analysis does require a lower bound because we need to control the accuracy of the estimator
ρ̂k. The following theorem is, to the best of our knowledge, a novel result.
Theorem 2.1. Suppose we run the UCB algorithm with γ ≥ 4, then the Tk’s satisfy the bounds
described in Definition 2.3.

The UCB algorithm in practice satisfy the lower bounds even with a smaller γ. We refer the readers
to Theorem 5.1 and Theorem 5.2 of Section 5.1 of the appendix for the proof.

As described in Section 2.1, we form estimators ρ̂k by dividing the number of clicks by the number
of impressions Tk. The estimator ρ̂k is not an average of Tk i.i.d Bernoulli random variables because
the size Tk is correlated with ρ̂k. This is known as the sample selection bias.
Definition 2.4. We define the sample selection bias as E[ρ̂k]− ρk.

We can still make the following concentration of measure statements about ρ̂k, for which we give a
standard proof in Section 5.1 of the appendix.
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Lemma 2.1. For any MAB learning algorithm, with probability at least 1 − O( nT ), for all t =
1, ..., T , for all k = 1, ..., n, the confidence bound holds.

ρk −
√

(1/Tk(t)) log T ≤ ρ̂k,t ≤ ρk +
√

(1/Tk(t)) log T

2.3 Related Work

As mentioned before, how to design incentive compatible payment rules when using MAB algo-
rithms to select the best ads has been studied in [2] and [5]. However, their randomized payment
scheme is very different from the current industry standard and is somewhat impractical. The idea
of using MAB algorithms to simultaneously select ads and estimate click probabilities has proposed
in [11], [8] and [13] . However, they either do not analyze estimation quality or do not analyze it
beyond a concentration of measure deviation bound. Our work in contrast shows that it is in fact the
estimation bias that is important in the game theoretic setting. [9] studies the effect of CTR learning
on incentive compatibility from the perspective of an advertiser with imperfect information.

This work is only the first step towards understanding the effect of estimation bias in MAB algo-
rithms for search advertising auctions, and we only focus on a relative simplified setting with only
a single ad slot and without budget constraints, which is already difficult to analyze. We leave the
extensions to multiple ad slots and with budget constraints as future work.

3 Revenue and Sample Selection Bias

In this section, we analyze the impact of a MAB algorithm on the search engine’s revenue. We show
that the direct plug-in of the estimators from a MAB algorithm (either unform or adaptive) will cause
the sample selection bias and damage the search engine’s revenue; we then propose a simple de-bias
method which can ensure the revenue guarantee. Throughout the section, we fix a bid vector b. We
define the notations (1), (2) as (1) := arg maxk ρ̂kbk and (2) := arg maxk 6=(1) ρ̂kbk.

Before we present our main result, we pause to give some intuition about sample selection bias.
Assume b1ρ1 ≥ b2ρ2... ≥ bnρn and suppose we use the UCB algorithm in the learning stage. If
ρ̂k > ρk, then the UCB algorithm will select k more often and thus acquire more click data to
gradually correct the overestimation. If ρ̂k < ρk however, the UCB algorithm will select k less
often and the underestimation persists. Therefore, E[ρk] < ρk.

3.1 Revenue Analysis

The following theorem is the main result of this section, which shows that the bias of the CTR
estimators can critically affect the search engine’s revenue.

Theorem 3.1. Let T0 := 4n
ρ21

log T , T adptmin := 5c′
(∑

k 6=1
max(b21,b

2
k)

∆2
k

)
log T , and Tunifmin :=

4
nb2max

c∆2
2

log T . Let c be the constant introduced in Definition 2.3 and 2.2.

If T ≥ T0, then, for either adaptive or uniform algorithms,

b2ρ2 − E[r̂ev] ≤
((
b2ρ2 − b2E[ρ̂2]

ρ1

E[ρ̂1]

)
−O

(√
n

T
log T

)
−O

( n
T

))
.

If we use adaptive algorithms and T ≥ T adptmin or if we use uniform algorithms and T ≥ Tunifmin , then

b2ρ2 − E[r̂ev] ≤
(

(b2ρ2 − b2E[ρ̂2]
ρ1

E[ρ̂1]
)−O

( n
T

))
We leave the full proof to Section 5.2 of the appendix and provide a quick sketch here. In the first
case where T is smaller than thresholds T adptmin or Tunifmin , the probability of incorrect ranking, that is,
incorrectly identifying the best ad, is high and we can only use concentration of measure bounds to
control the revenue loss. In the second case, we show that we can almost always identify the best ad
and therefore, the

√
n
T log T error term disappears.
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The (b2ρ2−b2E[ρ̂2] ρ1
E[ρ̂1] ) term in the theorem is in general positive because of sample selection bias.

With bias, the best bound we can get on the expectation E[ρ̂2] is that |E[ρ̂2]−ρ2| ≤ O
(√

1
T2

log T
)

,
which is through the concentration inequality (Lemma 2.1).

Remark 3.1. With adaptive learning, T1 is at least the order of O( nT ) and 1
T2

log T ≥ ∆2
2

c′b22
. There-

fore, ρ1
E[ρ̂1] is at most on the order of 1 +

√
n
T log T and b2ρ2 − b2E[ρ̂2] is on the order of O(∆).

Combining these derivations, we get that b2ρ2 − E[r̂ev] ≤ O(∆2) + O
(
n
T

)
. This bound suggests

that the revenue loss does not converge to 0 as T increases. Simulations in Section 5 show that
our bound is in fact tight: the expected revenue loss for adaptive learning, in presence of sample
selection bias, can be large and persistent.

For many common uniform learning algorithms (uniformly random selection for instance) sample
selection bias does not exist and so the expected revenue loss is smaller. This seems to suggest that,
because of sample selection bias, adaptive algorithms are, from a revenue optimization perspective,
inferior. The picture is switched however if we use a debiasing technique such as the one we propose
in section 3.2. When sample selection bias is 0, adaptive algorithms yield better revenue because
it is able to correctly identify the best advertisement with fewer rounds. We make this discussion
concrete with the following results in which we assume a post-learning unbiasedness condition.
Definition 3.1. We say that the post-learning unbiasedness condition holds if for all k, E[ρ̂k] = ρk.

This condition does not hold in general, but we provide a simple debiasing procedure in Section 3.2
to ensure that it always does. The following Corollary follows immediately from Theorem 3.1 with
an application of Jensen’s inequality.

Corollary 3.1. Suppose the post-learning unbiasedness condition holds. Let T0 ≤ T adptmin ≤ Tunifmin
be defined as in Theorem 3.1.

If we use either adaptive or uniform algorithms and T ≥ T0, then b2ρ2 − E[r̂ev] ≤ O
(√

n
T log T

)
.

If we use adaptive algorithm and T ≥ T adptmin or if we use uniform algorithm and T ≥ Tunifmin , then

b2ρ2 − E[r̂ev] ≤ O
( n
T

)
The revenue loss guarantee is much stronger with the unbiasedness, which we confirm in our simu-
lations in Section 5.

Corollary 3.1 also shows that the revenue loss drops sharply from
√

n
T log T to n

T once T is larger
than some threshold. Intuitively, this behavior exists because the probability of incorrect ranking be-
comes negligibly small when T is larger than the threshold. Because the adaptive learning threshold
T adptmin is always smaller and often much smaller than the uniform learning threshold Tunifmin , Corol-
lary 3.1 shows that adaptive learning can guarantee much lower revenue loss when T is between
T adptmin and Tunifmin . It is in fact the same adaptiveness that leads to low regret that also leads to the
strong revenue loss guarantees for adaptive learning algorithms.

3.2 Sample Selection Debiasing

Given a MAB algorithm, one simple meta-algorithm to produce an unbiased estimator where the
Tk’s still satisfy Definition 2.3 and 2.2 is to maintain “held-out” click history logs. Instead of
keeping one history log for each advertisement, we will keep two; if the original algorithm allocates
one impression to advertiser k, we will actually allocate two impressions at a time and record the
click result of one of the impressions in the first history log and the click result of the other in the
heldout history log.

When the MAB algorithm requires estimators ρ̂k’s or click data to make an allocation, we will allow
it access only to the first history log. The estimator learned from the first history log is biased by
the selection procedure but the heldout history log, since it does not influence the ad selection, can
be used to output an unbiased estimator of each advertisement’s click probability at the end of the
exploration stage. Although this scheme doubles the learning length, sample selection debiasing can
significantly improve the guarantee on expected revenue as shown in both theory and simulations.
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4 Advertisers’ Utilities and ELM Bias

In this section, we analyze the impact of a MAB algorithm on advertisers’ utilities. The key re-
sult of this section is the adaptive algorithms can exacerbate the “estimation of the largest mean”
(ELM) bias, which arises because expectation of the maximum is larger than the maximum of the
expectation. This ELM bias will damage advertisers’ utilities because of overcharging.

We will assume that the reader is familiar with the concept of incentive compatbility and give only a
brief review. We suppose that there exists a true value vi, which exactly measures how much a click
is worth to advertiser i. The utility per impression of advertiser i in the auction is then ρi(vi − pi)
if the ad i is displayed where pi is the per-click payment charged by the search engine charges. An
auction mechanism is called incentive compatible if the advertisers maximize their own utility by
truthfully bidding: bi = vi. For auctions that are close but not fully incentive compatible, we also
define player-regret as the utility lost by advertiser i in truthfully bidding vi rather than a bid that
optimizes utility.

4.1 Player-Regret Analysis

We define v = (v1, ..., vn) to be the true per-click values of the advertisers. We will for
simplicity assume that the post-learning unbiasedness condition (Definition 3.1) holds for all
our results in this section. We introduce some formal definitions before we begin our anal-
ysis. For a fixed vector of competing bids b−k, we define the player utility as uk(bk) ≡
Ibkρ̂k(bk)≥bk′ ρ̂k′ (bk)∀k′

(
vkρk −

maxk′ 6=k bk′ ρ̂k′ (bk)

ρ̂k(bk) ρk

)
, where Ibkρ̂k(bk)≥bk′ ρ̂k′ (bk)∀k′ is a 0/1 func-

tion indicating whether the impression is allocated to ad k. We define the player-regret, with respect
to a bid vector b, as the player’s optimal gain in utility through false bidding supb E[uk(bk)] −
E[uk(vk)]. It is important to note that we are hiding uk(bk)’s and ρ̂k(bk)’s dependency on the com-
peting bids b−k in our notation. Without loss of generality, we consider the utility of player 1. We
fix b−1 and we define k∗ ≡ arg maxk 6=1 bkρk. We divide our analysis into cases, which cover the
different possible settings of v1 and competing bid b−1.

Theorem 4.1. The following holds for both uniform and adaptive algorithms.

Suppose bk∗ρk∗ − v1ρ1 ≥ ω(
√

n
T log T ), then, supb1 E[u1(b1)] − E[u1(v1)] ≤ O

(
n
T

)
. Suppose

|v1ρ1 − bk∗ρk∗ | ≤ O(
√

n
T log T ) , then supb1 E[u1(b1)]− E[u1(v1)] ≤ O

(√
n
T log T

)
.

Theorem 4.1 shows that when v1ρ1 is not much larger than bk∗ρk∗ , the player-regret is not too large.
The next Theorem shows that when v1ρ1 is much larger than bk∗ρk∗ however, the player-regret can
be large.

Theorem 4.2. Suppose v1ρ1 − bk∗ρk∗ ≥ ω
(√

n
T log T

)
, then, for both uniform and adaptive

algorithms:

∀b1,E[u1(b1, b−1)]−E[u1(v1, b−1)] ≤ max
(

0,E[b(2)(v1)ρ̂(2)(v1)]− E[b(2)(b1)ρ̂(2)(b1)] +O
( n
T

))
We give the proofs of both Theorem 4.1 and 4.2 in Section 5.3 of the appendix.

Both expectations E[b(2)(v1)ρ̂(2)(v1)] and E[b(2)(b1)ρ̂(2)(b1)] can be larger than b2ρ2 because the
E[maxk 6=1 bkρ̂k(v1)] ≥ maxk 6=1 bkE[ρ̂k(v1)].

Remark 4.1. In the special case of only two advertisers, it must be that (2) = 2 and therefore
E[b(2)(v1)ρ̂(2)(v1)] = b2ρ2 and E[b(2)(v1)ρ̂(2)(v1)] = b2ρ2. The player-regret is then very small:
supb1 E[u1(b1, b2)]− E[u1(v1, b2)] ≤ O

(
n
T

)
.

The incentive can be much larger when there are more than 2 advertisers. Intuitively, this is be-
cause the bias E[b(2)(b1)ρ̂(2)(b1)] − b2ρ2 increases when T2(b1), ..., Tn(b1) are low–that is, it in-
creases when the variance of ρ̂k(b1)′s are high. An omniscient advertiser 1, with the belief that
v1ρ1 >> b2ρ2, can thus increase his/her utility by underbidding to manipulate the learning algo-
rithm to allocate more rounds to advertisers 2, .., n and reduce the variance of ρ̂k(b1)′s. Such a
strategy will give advertiser 1 negative utility in the learning CTR learning stage, but it will yield
positive utility in the longer SP auction stage and thus give an overall increase to the player utility.
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In the case of uniform learning, the advertiser’s manipulation is limited because the learning algo-
rithm is not significantly affected by the bid.

Corollary 4.1. Let the competing bid vector b−1 be fixed. Suppose that v1ρ1 − bk∗ρk∗ ≥
ω
(√

n
T log T

)
. If uniform learning is used in the first stage, we have that

sup
b1

E[u1(b1, b−1)]− E[u1(v1, b−1)] ≤ O
(√

n

T
log T

)

Nevertheless, by contrasting this with
√

n
T log T bound with the n

T bound we would get in the two
advertiser case, we see the negative impact of ELM bias on incentive compatibility. The negative
effect is even more pronounced in the case of adaptive learning. Advertiser 1 can increase its own
utility by bidding some b1 smaller than v1 but still large enough to ensure that b1ρ̂1(b1) still be
ranked the highest at the end of the learning stage. We explain this intuition with more details in the
following example, which we also simulate in Section 5.

Example 4.1. Suppose we have n advertisers and b2ρ2 = b3ρ3 = ...bnρn. Suppose that v1ρ1 >>
b2ρ2 and we will show that advertiser 1 has the incentive to underbid.

Let ∆k(b1) ≡ b1ρ1 − bkρk, then ∆k(b1)’s are the same for all k and ∆k(v1) >> 0 by previous
supposition. Suppose advertiser 1 bids b1 < v1 but where ∆k(b1) >> 0 still. We assume that
Tk(b1) = Θ

(
log T

∆k(b1)2

)
for all k = 2, ..., n, which must hold for large T by definition of adaptive

learning.

From Lemma 5.4 in the appendix, we know that

E[b(2)(b1)ρ̂(2)(b1)]− b2ρ2 ≤

√
log(n− 1)

Tk
≤

√
log(n− 1)

log T
(b1ρ1 − bkρk) (4.1)

The Eqn. (4.1) is an upper bound but numerical experiments easily show that E[b(2)(b1)ρ̂(2)(b1)] is
in fact on the same order as the RHS of Eqn. (4.1).

From Eqn. (4.1), we derive that, for any b1 such that b1ρ1 − b2ρ2 ≥ ω
(√

n
T log T

)
:

E[u1(b1, b−1)]− E[u1(v1, b−1)] ≤ O

(√
log(n− 1)

log T
(v1ρ1 − bρ1)

)

Thus, we cannot guarantee that the mechanism is approximately truthful. The bound decreases with
T at a very slow logarithmic rate because with adaptive algorithm, a longer learning period T might
not reduce the variances of many of the estimators ρ̂k’s.

We would like to at this point briefly compare our results with that of [9], which shows, under an
imperfect information definition of utility, that advertisers have an incentive to overbid so that the
their CTRs can be better learned by the search engine. Our results are not contradictory since we
show that only the leading advertiser have an incentive to underbid.

4.2 Bias Reduction in Estimation of the Largest Mean

The previous analysis shows that the incentive-incompatibility issue in the case of adaptive learning
is caused by the fact that the estimator b(2)ρ̂(2) = maxk 6=1 b2ρ̂2 is upward biased. E[b(2)ρ̂(2)] is
much larger than b2ρ2 in general even if the individual estimators ρ̂k’s are unbiased. We can abstract
out the game theoretic setting and distill a problem known in the statistics literature as “Estimation
of the Largest Mean” (ELM): given N probabilities {ρk}k=1,...,N , find an estimator ρ̂max such that
E[ρ̂max] = maxk ρk. Unfortunately, as proved by [4] and [3], unbiased estimator for the largest
mean does not exist for many common distributions including the Gaussian, Binomial, and Beta; we
thus survey some methods for reducing the bias.

[3] studies techniques that explicitly estimate and then substract the bias. Their method, though
interesting, is specific to the case of selecting the larger mean among only two distributions. [1]
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proposes a different approach based on data-splitting. We randomly partition the data in the click-
through history into two sets S,E and get two estimators ρ̂Sk , ρ̂Ek . We then use ρ̂Sk for selection
and output a weighted average λρ̂Sk + (1 − λ)ρ̂Ek . We cannot use only ρ̂Ek for estimating the value
because, without conditioning on a specific selection, it is downwardly biased. We unfortunately
know of no principled way to choose λ. We implement this scheme with λ = 0.5 and show in
simulation studies in Section 5 that it is effective.

5 Simulations

We simulate our two stage framework for various values of T . Figures 1a and 1b show the effect
of sample selection debiasing (see Section 3, 3.2) on the expected revenue where one uses adaptive
learning. (the UCB algorithm 2.1 in our experiment) One can see that selection bias harms the
revenue but the debiasing method described in Section 3.2, even though it holds out half of the click
data, significantly lowers the expected revenue loss, as theoretically shown in Corollary 3.1. We
choose the tuning parameter γ = 1. Figure 1c shows that when there are a large number of poor
quality ads, low regret adaptive algorithms indeed achieve better revenue in much fewer rounds of
learning. Figure 1d show the effect of estimation-of-the-largest-mean (ELM) bias on the utility gain
of the advertiser. We simulate the setting of Example 4.1 and we see that without ELM debiasing,
the advertiser can noticeably increase utility by underbidding. We implement the ELM debiasing
technique described in Section 4.2; it does not completely address the problem since it does not
completely reduce the bias (such a task has been proven impossible), but it does ameliorate the
problem–the increase in utility from underbidding has decreased.
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(a) n = 2, ρ1 = 0.09, ρ2 = 0.1, b1 = 2, b2 = 1
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(b) n = 2, ρ1 = .3, ρ2 = 0.1, b1 = 0.7, b2 = 1
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(c) n = 42, ρ1 = .2, ρ2 = 0.15, b1 = 0.8,
b2 = 1. All other bk = 1, ρk = 0.01.
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(d) n = 5, ~ρ = {0.15, 0.11, 0.1, 0.05, 01},
~b−1 = {0.9, 1, 2, 1}

Figure 1: Simulation studies demonstrating effect of sample selection debiasing and ELM debiasing.
The revenue loss in figures a to c is relative and is measured by 1 − revenue

b2ρ2
; negative loss indicate

revenue improvement over oracle SP. Figure d shows advertiser 1’s utility gain as a function of
possible bids. The vertical dotted black line denote the advertiser’s true value at v = 1. Utility gain
is relative and defined as utility(b)

utility(v) − 1; higher utility gain implies that advertiser 1 can benefit more
from strategic bidding. The expected value is computed over 500 simulated trials.
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