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Abstract

It has been long argued that, because of inherent ambiguity and noise, the brain
needs to represent uncertainty in the form of probability distributions. The neu-
ral encoding of such distributions remains however highly controversial. Here we
present a novel circuit model for representing multidimensional real-valued distri-
butions using a spike based spatio-temporal code. Our model combines the com-
putational advantages of the currently competing models for probabilistic codes
and exhibits realistic neural responses along a variety of classic measures. Fur-
thermore, the model highlights the challenges associated with interpreting neural
activity in relation to behavioral uncertainty and points to alternative population-
level approaches for the experimental validation of distributed representations.

Core brain computations, such as sensory perception, have been successfully characterized as prob-
abilistic inference, whereby sensory stimuli are interpreted in terms of the objects or features that
gave rise to them [1, 2]. The tenet of this Bayesian framework is the idea that the brain repre-
sents uncertainty about the world in the form of probability distributions. While this notion seems
supported by behavioural evidence, the neural underpinnings of probabilistic computation remain
highly debated [1, 2]. Different proposals offer different trade-offs between flexibility, i.e. the class
of distributions they can represent, and speed, i.e. how fast can the uncertainty be read out from the
neural activity. Given these two dimensions, we can divide existing models in two main classes.

The first set, which we will refer to as spatial codes, distributes information about the distribution
across neurons; the activity of different neurons reflects different values of an underlying random
variable (alternatively, it can be viewed as encoding parameters of the underlying distribution [1,
2]). Linear probabilistic population codes (PPCs) are a popular instance of this class, whereby
the log-probability of a random variable can be linearly decoded from the responses of neurons
tuned to different values of that variable [3]. This encoding scheme has the advantage of speed, as
uncertainty can be decoded in a neurally plausible way from the quasi-instantaneous neural activity,
and reproduces aspects of the experimental data. However, these benefits come at the price of
flexibility: the class of distributions that the network can represent needs to be highly restricted,
otherwise the network size scales exponentially with the number of variables [1].

This limitation has lead to a second class of models, which we will refer to as temporal codes.These
use stochastic network dynamics to sample from the target distribution [4, 1]. Existing models
from this class assume that the activity of each neuron encodes a different random variable; the
network explores the state space such that the time spent in any particular state is proportional to its
probability under the distribution [4]. This representation is exact in the limit of infinite samples.
It has several important computational advantages (e.g. easy marginalization, parameter learning,
linear scaling of network size with the number of dimensions) and further accounts for trial-to-
trial variability in neural responses [1]. These benefits come at the cost of sampling time: a fair
representation of the underlying distribution requires pooling over several samples, i.e. integrating
neural activity over time. Some have argued that this feature makes sampling unfeasibly slow [2].
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Here we show that it is possible to construct spatio-temporal codes that combine the best of both
worlds. The core idea is that the network activity evolves through recurrent dynamics such that
samples from the posterior distribution can be linearly decoded from the (quasi-)instantaneous neu-
ral responses. This distributed representation allows several independent samples to be encoded
simultaneously, thus enabling a fast representation of uncertainty that improves over time. Com-
putationally, our model inherits all the benefits of a sampling-based representation, while overcom-
ing potential shortcomings of classic temporal codes. We explored the general implications of the
new coding scheme for a simple inference problem and found that the network reproduces many
properties of biological neurons, such as tuning, variability, co-variability and their modulation by
uncertainty. Nonetheless, these single or pairwise measures provided limited information about the
underlying distribution represented by the circuit. In the context of our model, these results argue for
using decoding as tool for validating distributed probabilistic codes, an approach which we illustrate
with a simple example.

1 A distributed spatio-temporal representation of uncertainty

The main idea of the representation is simple: we want to approximate a real-valued D-dimensional
distribution P(x) by samples generated by K independent chains implementing Markov Chain
Monte Carlo (MCMC) sampling [5], y(t) = {yk(t)}k=1...K , with yk ∼ P(x) (Fig. 1). To this aim,
we encode the stochastic trajectory of the chains in a population of N spiking neurons (N > KD),
such that y(t) is linearly decodable from the neural responses. In particular, we adapt a recently
proposed coding scheme for representing time-varying signals [6] and construct stochastic neural
dynamics such that samples from the target distribution can be obtained by a linear mapping of the
spikes convolved with an epsp-like exponential kernel (Fig. 1a):

ŷ(t) = Γ · r(t) (1)

where ŷ(t) denotes the decoded state of the K MCMC chains at time t (of size D × K), Γ is the
decoding matrix1 and r is the low-pass version of the spikes o, τV ṙi = −ri + oi.

To facilitate the presentation of the model, we start by constructing recurrent dynamics for sampling
a single MCMC chain, which we then generalise to the multi-chain scenario. Based on these network
dynamics, we implement probabilistic inference in a linear Gaussian mixture, which we use in
Section 2 to investigate the neural implications of the code.

Distributed MCMC sampling

As a starting point, consider the computational task of representing an arbitrary temporal trajectory
(the gray line in Fig. 1b) as the linear combination of the responses of a set of neurons (one can think
of this as an analog-to-digital conversion of sorts). If the decoding weights of each neuron points in
a different direction (colour coded), then the trajectory could be efficiently reconstructed by adding
the proper weight vectors (the local derivative of the trajectory) at just the right moment. Indeed,
recent work has shown how to construct network dynamics enabling the network to track a trajectory
as closely as possible [6]. To achieve this, neurons use a greedy strategy: each neuron monitors
the current prediction error (the difference between the trajectory and its linear decoding from the
spikes) and spikes only when its weight vector points in the right direction. When the decoding
weights of several neurons point the same way (as in Fig. 1a), they compete to represent the signal
via recurrent inhibition:2 from the perspective of the decoder, it does not matter which of these
neurons spikes next, so the actual population responses depend on the previous spike history, initial
conditions and intrinsic neural noise.3 As a result, spikes are highly irregular and look ‘random’
(with Poisson-like statistics), even when representing a constant signal. While competition is an
important driving force for the network, neurons can also act cooperatively – when the change in the
signal is larger than the contribution of a single decoding vector, then several neurons need to spike
together to represent the signal (e.g. response to the step in Fig. 1a).

1The decoding matrix can be arbitrary.
2This competition makes spike correlations extremely weak in general [7].
3When N � D there is a strong degeneracy in the map between neural responses and the signal, such that

several different spike sequences yield the same decoded signal. In absence of internal noise, the encoding is
nonetheless deterministic despite apparent variability.
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Figure 1: Overview of the model. a. We assume a linear decoder, where the estimated signal ŷ
is obtained as a weighted sum of neural responses (exponential kernel, blue). b. When the signal
is multidimensional, different neurons are responsible for encoding different directions along the
target trajectory (gray). c. Alternative network architectures: in the externally-driven version the
target trajectory is given as an external input, whereas in the self-generated case it is computed via
slow recurrent connections (green arrow); the input s is used during inference, when sampling from
P(x|s). d. Encoding an example MCMC trajectory in the externally-driven mode. Light colours
show ground truth; dark colours the decoded signal. e. Single-chain samples from a multivariate
distribution (shown as colormap) decoded from a spiking network; trajectory subsampled by a factor
of 10 for visibility. e. Decoded samples using 5 chains (colors) and a fifth of the time in e.

Formally, the network dynamics minimise the squared reconstruction error, (y − ŷ)
2, under certain

constraints on mean firing rate which ensure the representation is distributed (see Suppl. Info.).
The resulting network consists of spiking neurons with simple leaky-integrate-and-fire dynamics,
V̇ = − 1

τv
V−Wo + I, where V̇ denotes the temporal derivative of V, the binary vector o denotes

the spikes, oi(t) = δ iff Vi(t) > Θi, τv is the membrane time constant (same as that of the decoder),
the neural threshold is Θi =

∑
j Γ2

ij + λ and the recurrent connections, W = ΓTΓ + λ · I, can
be learned by STDP [8], where λ is a free parameter controlling neural sparseness. The membrane
potential of each neuron tracks the component of the reconstruction error along the direction of its
decoding weights. As a consequence, the network is balanced (because the dynamics aim to bring
the reconstruction error to zero) and membrane potentials are correlated, particularly in pairs of
neurons with similar decoding weights [7] (see Fig. 2c).

In the traditional form, which we refer to as the ‘externally-driven’ network (Fig. 1c), information
about the target trajectory is provided as an external input to the neurons: I = ΓT · (1/τvy + ẏ). In
our particular case, this input implements a particular kind of MCMC sampling (Langevin). Briefly,
the sampler involves stochastic dynamics driven by the gradient of log P (y), with additive Gaussian
noise [5] (see Suppl.Info. for implementation details). Hence, the external input is stochastic I =
ΓT · (1/τvy + F (y) + ε), where F (y) = ∇ log P(y), and ε is D-dimensional white independent
Gaussian noise. Using our network dynamics, we can encode the MCMC trajectory with high
precision (Fig. 1d). Importantly, because of the distributed representation, the integration window
of the decoder does not restrict the frequency content of the signal. The network can represent
signals that change faster than the membrane time constant (Fig. 1a, d).

To construct a viable biological implementation of this network, we need to embed the sampling
dynamics within the circuit (‘self-generated’ architecture in Fig. 1c). We achieved this by approxi-
mating the current I using the decoded signal ŷ instead of y. This results in a second recurrent input
to the neurons, Î = ΓT · (1/τv ŷ + F (ŷ) + ε). While this is an approximation, we found it does not
affect sampling quality in the parameter regime when the encoding scheme itself works well (see
example dynamics in Fig. 1e).
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Such dynamics can be derived for any distribution from the broad class of product-of-(exponential-
family) experts [9], with no restrictions on D; for simplicity and to ease visualisation, here we focus
on the multivariate Gaussian case and restrict the simulations to bivariate distributions (D = 2). For
a Gaussian distribution with mean µ and covariance Σ, the resulting membrane potential dynamics
are linear:4

∂V

∂t
= − 1

τv
V −Wfasto + Wslowr + D + ΓTε (2)

where o denotes the spikes, r is a low-passed version of the spikes. The connections Wfast

correspond to the recurrent dynamics derived above, while the slow5 connections, Wslow =
1

τslow
· ΓT

(
I−Σ−1

)
Γ (e.g. NMDA currents) and the drift term D = 1

τslow
ΓTΣ−1µ correspond to

the deterministic component of the MCMC dynamics6 and ε is white independent Gaussian noise
(implemented for instance by a small chaotic subnetwork appropriately connected to the principal
neurons). In summary, relatively simple leaky integrate-and-fire neurons with appropriate recurrent
connectivity are sufficient for implementing Langevin sampling from a Gaussian distribution in a
distributed code. More complex distributions will likely involve nonlinearities in the slow connec-
tions (possibly computed in the dendrites) [10].

Multi-chain encoding: instantaneous representation of uncertainty

The earliest proposal for sampling-based neural representations of uncertainty suggested distributing
samples either across neurons or across time [4]. Nonetheless, all realisations of neural sampling use
the second solution. The reason is simple: when equating the activity of individual neurons (either
voltage or firing rate) to individual random variables, it is relatively straightforward to construct neu-
ral dynamics implementing MCMC sampling. It is less clear what kind of neural dynamics would
generate samples in several neurons at a time. One naive solution would be to construct several net-
works that each sample from the same distribution in parallel. This however seems to unavoidably
entail a ‘copy-pasting’ of all recurrent connections across different circuits, which is biologically
unrealistic. Our distributed representation, in which neurons jointly encode the sampling trajectory,
provides a potential solution to this problem. In particular, it allows several chains to be embedded
in a single network.

To extend the dynamics to a multi-chain scenario, we imagine an auxiliary probability distribution
over K random variables. We want each to correspond to one chain, so we take them to be indepen-
dent and identically distributed according to P(x). Since the sampling dynamics derived above do
not restrict the dimensionality of the underlying distribution, we can use them to sample from this
D×K-dimensional distribution instead. For the example of a multivariate normal, for instance, we
would now sample from another Gaussian, P

(
x∗K), with mean µ∗K (K repetitions of µ) and co-

variance Σ∗K , a block-diagonal matrix, obtained by K repetitions of Σ. In general, the multi-chain
trajectory can be viewed as just another instance of MCMC sampling, where the encoding scheme
guarantees that the signals across different chains remain independent. What may change, however,
is the interpretability of neural responses in relation to the underlying encoded variable. We show
that under mild assumptions on the decoding matrix Γ, the main features of single and pairwise
responses are preserved (see below and Suppl.Info. Sec.4).

Fig. 1f shows an example run for multi-chain sampling from a bivariate Gaussian. In a fifth of the
time used in the single-chain scenario (Fig. 1e), the network dynamics achieves a similar spread
across the state space, allowing for a quick estimation of uncertainty (see also Suppl.Info. 2). For a
certain precision of encoding (determined by the size of the decoding weights Γ) and neural sparse-
ness level, N scales linearly with the dimensionality of the state space D and the number of simul-
taneously encoded chains K. Thus, our representation provides a convenient trade-off between the
network size and the speed of the underlying computation. When N is fixed, faster sampling re-
quires either a penalty on precision, or increased firing rates (N � D). Overall, the coding scheme
allows for a linear trade-off between speed and resources (either neurons or spikes).

4Since F (x) = Σ−1 (x− µ), this results in a stochastic generalisation of the dynamics in [7].
5‘Slow’ marks the fact that the term depends on the low-passed neural output r, rather than o.
6Learning the connections goes beyond the scope of this paper; it seems parameter learning can be achieved

using the plasticity rules derived for the temporal code, if these are local (not shown).
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2 Neural implications

To investigate the experimental implications of our coding scheme, we assumed the posterior distri-
bution is centred around a stimulus-specific mean (a set of S = 12 values, equidistantly distributed
on a circle of radius 1 around the origin, see black dots in Fig. 3a), with a stimulus independent
covariance parametrizing the uncertainty about x. This kind of posterior arises e.g. as a result of
inference in a linear Gaussian mixture (since the focus here is not on a specific probabilistic model
of the circuit function, we keep the computation very basic, see Suppl. Info. for details). It allows us
quantify the general properties of distributed sampling in terms of classic measures (tuning curves,
Fano factors, FF, cross-correlogram, CCG, and spike count correlations, rsc) and how these change
with uncertainty.

Since we found that, under mild assumptions for the decoding matrix Γ, the results are qualitatively
similar in a single vs. a multi-chain scenario (see Suppl. Info.), and to facilitate the explanation, the
results reported in the main text used K = 1.

Figure 2: Our model recapitulates several known features of cortical responses. a. Mean firing rates
as a function of stimulus, for all neurons (N = 37); color reflects the phase of Γi (right). b. The
network is in an asynchronous state. Left: example spike raster. Right: Fano factor distribution. c.
Within-trial correlations in membrane potential for pairs of neurons as a function of the similarity
of their decoding weights. d. Spike count correlations (averaged across stimuli) as a function of
the neurons’ tuning similarity. Right: distribution of rsc, with mean in magenta. e We use cross-
correlograms (CCG) to asses spike synchrony. Left: CCG for an example neuron. Middle: Area
under the peak±10ms (between the dashed vertical bars) for all neuron pairs for 3 example stimuli;
neurons ordered by Γi phase. Right: the area under CCG peak as a function of tuning similarity.

a. The neural dynamics are consistent with a wide range of experimental observations
First, we measured the mean firing rate of the neurons for each stimulus (averaged across 50 tri-
als, each 1s long). We found that individual neurons show selectivity to stimulus orientations, with
bell-shaped tuning curves, reminiscent of e.g. the orientation-tuning of V1 neurons (Fig. 2a). The in-
homogeneity in the scale of the responses across the population is a reflection of the inhomogeneities
in the decoding matrix Γ.7

7The phase of the decoding weights was sampled uniformly around the circle, with an amplitude drawn
uniformly from the interval [0.005; 0.025].
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Neural responses were asynchronous, with irregular firing (Fig. 2b), consistent with experimental
observations [11, 12]. To quantify neural variability, we estimated the Fano factors, measured as the
ratio between the variance and the mean of the spike counts in different trials, FFi = σ2

fi
/µfi . We

found that the Fano factor distribution was centered around 1, a signature of Poisson variability. This
observation suggests that the sampling dynamics preserve the main features of the distributed code
described in Ref. [6]. Unlike the basic model, however, here neural variability arises both because
of indeterminacies, due to distributed coding, and because of ‘true’ stochasticity, owed to sampling.
The contribution of the latter, which is characteristic of our version, will depend on the underlying
distribution represented: when the distribution is highly peaked, the deterministic component of the
MCMC dynamics dominates, while the noise plays an increasingly important role the broader the
distribution.

At the level of the membrane potential, both sources of variability introduce correlations between
neurons with similar tuning (Fig. 2c), as seen experimentally [13]: the first because the reconstruc-
tion error acts as a shared latent cause, the second because the stochastic component –which was
independent in the y space– is mapped through ΓT in a distributed representation (see Eq. 2). While
the membrane correlations introduced by the first disappear at the level of the spikes [7], the addition
of the stochastic component turns out to have important consequences for the spike correlations both
on the fast time scale, measured by CCG, and for the across-trial spike count covariability, measured
by the noise correlations, rsc.

Fig. 2e shows the CCG of an example pair of neurons, with similar tuning; their activity synchro-
nizes on the time scale of few milliseconds. In more detail, our CCG measure was normalised by
first computing the raw cross-correlogram (averaged across trials) and then subtracting a baseline
obtained as the CCG of shuffled data, where the responses of each neuron come from a different
trial. The raw cross-correlogram for a time delay, τ , CCG(τ) was computed as the Pearsons corre-
lation of the neural responses, shifted in time time by τ .8 At the level of the population, the amount
of synchrony (measured as the area under the CCG peak ±10ms) was strongly modulated by the
input (Fig. 2e, middle), with synchrony most prominent in pairs of neurons that aligned with the
stimulus (not shown). This is consistent with the idea that synchrony is stimulus-specific [14, 15].

We also measured spike count correlation (the Pearsons correlation coefficient of spike counts
recorded in different trials for the same stimulus) and found they depend on the selectivity of the
neurons, with positive correlations for pairs of neurons with similar tuning (Fig. 2d), as seen in ex-
periments [16]. The overall distribution was broad, with a small positive mean (Fig. 2d), as in recent
reports [11, 12]. Taken together, these results suggest that our model qualitatively recapitulates the
basic features of cortical neural responses.

b. Uncertainty modulates neural variability and covariability
We have seen that sampling introduces spike correlations, not seen when encoding a deterministic
dynamical system [7]. Since stochasticity seems to be key for these effects, this suggests uncer-
tainty should significantly modulate pairwise correlations. To confirm this prediction, we varied the
covariance structure of the underlying distribution for the same circuit (Fig. 3a; the low variance con-
dition corresponds to baseline measures reported above) and repeated all previous measurements.
We found that changes in uncertainty leave neuronal tuning invariant (Fig. 3b, not surprisingly since
the mean firing rates reflect the posterior mean). Nonetheless, increasing uncertainty had significant
effects on neural variability and co-variability.

Fano factors increased for broader distributions (Fig. 3b), congruent with the common observation
of the stimulus quenching response variability in experiments [17]. Second, we found a slower
component in the CCG, which increased with uncertainty (Fig. 3e), as in the data [15]. Lastly, the
dependence of different spike correlation measures on neural co-tuning increased with uncertainty
(Fig. 3c, d). In particular, neurons with similar stimulus preferences increased their synchrony
and spike-count correlations with increasing uncertainty, consistent with the stimulus quenching
response co-variability in neural data and increases in correlations at low contrast [17, 16].

Although we see a significant modulation of (co-)variability with changes in uncentainty, these mea-
sures provide limited information about the underlying distribution represented in the network. They
can be used to detect changes in the overall spread of the distribution, i.e. the high vs. low-variance

8While this is not the most common expression for the CCG; we found it reliably detects synchronous firing
across neurons; spikes discretised in 2ms bins.
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Figure 3: The effects of uncertainty on neural responses. a. Overview of different experimen-
tal conditions, posterior mean centred on different stimuli (black dots) with stimulus independent
covariance shown for 4 conditions. b. Left: Tuning curves for an example neuron, for different con-
ditions. Right: firing rate in the low variance vs. all other conditions, summary across all neurons;
dots correspond to different neuron-stimulus pairs. c. Fano factor distribution for high-variance
condition (compare Fig.2b). d. Area under CCG peak ±10ms as a function of the tuning similarity
of the neurons, for different uncertainty conditions (colours as in b). e. Complete CCG, averaged
across 10 neurons with similar tuning while sampling from independent bivariate Gaussians with
different s.d. (0.1 for ‘high variance’). f. Spike count correlations (averaged across stimuli) as a
function of the tuning similarity of the neurons, for different uncertainty conditions.

condition look different at the level of pairwise neural responses. However, they cannot discriminate
between distributions with similar spread, but very different dependency structure, e.g. between the
correlated and anti-correlated condition (Fig. 3d, f; also true for FF and the slow component of the
CCG, not shown). For this, we need to look at the population level.

stimuli

experimental setup

S stimuli
(repeated trials)

ne
ur

on

1
2
3
4
5

true trajectory

estimate

estimate

same condition (lowVar) across condition(highVar)

estimate

across condition (Corr)a b c

Figure 4: A decoding approach to study the encoding of uncertainty. a. In a low-variability condition
we record neural responses for several repetitions of different stimuli (black dots); We estimated the
decoding matrix by linear regression and used it to project the activity of the population in individual
trials. b. The decoder captures well the underlying dynamics in a trial; ground-truth in black. c.
The same decoder Γ̂ can be used to visualise the structure of the underlying distribution in other
conditions. Note the method is robust to a misalignment in initial conditions (red trace).

c. Decoding can be used to assess neural representations of uncertainty
Since in a distributed representation single-neuron or pairwise measures tell us little about the de-
pendency structure of the represented random variables, alternative methods need to be devised for
investigating the underlying computation performed by the circuit. The representational framework
proposed here suggests that linear decoding may be used for this purpose. In particular, we can
record neural responses for a variety of stimuli and reverse-engineer the map between spikes and
the relevant latent variables (or, if the assumed generative model is linear as here, the stimuli them-
selves). We can use the low-variance condition to get a reasonable estimate of the decoding matrix,
Γ̂ (since the underlying sampling dynamics are close to the posterior mean) and then use the de-
coder for visualising the trajectory of the network while varying uncertainty. As an illustration, we
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use simple linear regression of the stimuli s as a function of the neuron firing rates, scaled by τv .9
Although the recovered decoding weights are imperfect and the initial conditions unknown, the pro-
jections of the neural responses in single trials along Γ̂ captures the main features of the underlying
sampler, both in the low-variance and in other conditions (Fig. 4b, c).

3 Discussion

How populations of neurons encode probability distributions in a central question for Bayesian ap-
proaches to understanding neural computation. While previous work has shown that spiking neural
networks could represent a probability over single real-valued variables [18], or the joint probability
of many binary random variables [19], the representation of complex multi-dimensional real-valued
distributions10 remains less clear [1, 2]. Here we have proposed a new spatio-temporal code for
representing such distributions quickly and flexibly. Our model relies on network dynamics which
approximate the target distribution by several MCMC chains, encoded in the spiking neural activity
such that the samples can be linearly decoded from the quasi-instantaneous neural responses. Un-
like previous sampling-based codes [19], our model does not require a one-to-one correspondence
between random variables and neurons. This separation between computation and representation is
critical for the increased speed, as it allows multiple chains to be realistically embedded in the same
circuit, while preserving all the computational benefits of sampling. Furthermore, it makes the en-
coding robust to neural damage, which seems important when representing behaviourally-relevant
variables, e.g. in higher cortical areas. These benefits come at the cost of a linear increase in the
number of neurons with K, providing a convenient trade-off between speed and neural resources.
The speedup due to increases in network size is orthogonal to potential improvements in sampling
efficiency achieved by more sophisticated MCMC dynamics, e.g. relying on oscillations [21] or non-
normal stochastic dynamics [22], suggesting that distributed sampling could be made even faster by
combining the two approaches.

The distributed coding scheme has important consequences for interpreting neural responses: since
knowledge about the underlying distribution is spread across the population, the activity of single
cells does not reflect the underlying computation in any obvious way. In particular, although the
network did reproduce various properties of single neuron and pairs of neuron responses seen exper-
imentally, we found that their modulation with uncertainty provides relatively limited information
about the underlying probabilistic computation. Changes in the overall spread (entropy) of the pos-
terior are reflected in changes in variability (Fano factors) and covariability (synchrony on the ms
timescale and spike-count correlations across trials) of neural responses across the population, as
seen in the data. Since these features arise due to the interaction between sampling and distributed
coding, the model further predicts that the degree of correlations between a pair of neurons should
depend on their functional similarity, and that the degree of this modulation should be affected by
uncertainty. Nonetheless, the distributed representation occludes the structure of the underlying
distribution (e.g. correlations between random variables), something which would have been imme-
diately apparent in a one-to-one sampling code.

Our results reinforce the idea that population, rather than single-cell, responses are key to under-
standing cortical computation, and points to linear decoding as a potential analysis tool for inves-
tigating probabilistic computation in a distributed code. In particular, we have shown that we can
train a linear decoder on spiking data and use it to reveal the underlying sampling dynamics in dif-
ferent conditions. While ours is a simple toy example, where we assume that we can record from
all the neurons in the population, the fact that the signal is low-dimensional relative to the number
of neurons gives hope that it should be possible to adapt more sophisticated machine learning tech-
niques [23] for decoding the underlying trajectory traced by a neural circuit in realistic settings. If
this could be done reliability on data, then the analysis of probabilistic neural computation would
no longer be restricted to regions for which we have good ideas about the mathematical form of the
underlying distribution, but could be applied to any cortical circuit of interest.11 Thus, our coding
scheme opens exciting avenues for multiunit data analysis.

9This requires knowledge of τv and, in a multi-chain scenario, a grouping of neural responses by chain
preference. Proxies for which neurons should be decoded together are discussed in Suppl.Info. Sec.4.

10Such distribution arise in many models of probabilistic inference in the brain, e.g. [20].
11The critical requirement is to know (some of) the variables represented in the circuit, up to a linear map.
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