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Abstract

We propose an approach for retrieving a sequence of natural sentences for an
image stream. Since general users often take a series of pictures on their special
moments, it would better take into consideration of the whole image stream to pro-
duce natural language descriptions. While almost all previous studies have dealt
with the relation between a single image and a single natural sentence, our work
extends both input and output dimension to a sequence of images and a sequence
of sentences. To this end, we design a multimodal architecture called coherent
recurrent convolutional network (CRCN), which consists of convolutional neural
networks, bidirectional recurrent neural networks, and an entity-based local co-
herence model. Our approach directly learns from vast user-generated resource of
blog posts as text-image parallel training data. We demonstrate that our approach
outperforms other state-of-the-art candidate methods, using both quantitative mea-
sures (e.g. BLEU and top-K recall) and user studies via Amazon Mechanical Turk.

1 Introduction

Recently there has been a hike of interest in automatically generating natural language descriptions
for images in the research of computer vision, natural language processing, and machine learning
(e.g. [5, 8, 9, 12, 14, 15, 26, 21, 30]). While most of existing work aims at discovering the relation
between a single image and a single natural sentence, we extend both input and output dimension to
a sequence of images and a sequence of sentences, which may be an obvious next step toward joint
understanding of the visual content of images and language descriptions, albeit under-addressed in
current literature. Our problem setup is motivated by that general users often take a series of pictures
on their memorable moments. For example, many people who visit New York City (NYC) would
capture their experiences with large image streams, and thus it would better take the whole photo
stream into consideration for the translation to a natural language description.

Figure 1: An intuition of our problem statement with a New York City example. We aim at expressing an image
stream with a sequence of natural sentences. (a) We leverage natural blog posts to learn the relation between
image streams and sentence sequences. (b) We propose coherent recurrent convolutional networks (CRCN)
that integrate convolutional networks, bidirectional recurrent networks, and the entity-based coherence model.

1

https://github.com/cesc-park/CRCN


Fig.1 illustrates an intuition of our problem statement with an example of visiting NYC. Our objective
is, given a photo stream, to automatically produce a sequence of natural language sentences that
best describe the essence of the input image set. We propose a novel multimodal architecture named
coherent recurrent convolutional networks (CRCN) that integrate convolutional neural networks for
image description [13], bidirectional recurrent neural networks for the language model [20], and the
local coherence model [1] for a smooth flow of multiple sentences. Since our problem deals with
learning the semantic relations between long streams of images and text, it is more challenging to
obtain appropriate text-image parallel corpus than previous research of single sentence generation.
Our idea to this issue is to directly leverage online natural blog posts as text-image parallel training
data, because usually a blog consists of a sequence of informative text and multiple representative
images that are carefully selected by authors in a way of storytelling. See an example in Fig.1.(a).

We evaluate our approach with the blog datasets of the NYC and Disneyland, consisting of more than
20K blog posts with 140K associated images. Although we focus on the tourism topics in our exper-
iments, our approach is completely unsupervised and thus applicable to any domain that has a large
set of blog posts with images. We demonstrate the superior performance of our approach by com-
paring with other state-of-the-art alternatives, including [9, 12, 21]. We evaluate with quantitative
measures (e.g. BLEU and Top-K recall) and user studies via Amazon Mechanical Turk (AMT).

Related work. Due to a recent surge of volume of literature on this subject of generating natural lan-
guage descriptions for image data, here we discuss a representative selection of ideas that are closely
related to our work. One of the most popular approaches is to pose the text generation as a retrieval
problem that learns ranking and embedding, in which the caption of a test image is transferred from
the sentences of its most similar training images [6, 8, 21, 26]. Our approach partly involves the
text retrieval, because we search for candidate sentences for each image of a query sequence from
training database. However, we then create a final paragraph by considering both compatibilities
between individual images and text, and the coherence that captures text relatedness at the level of
sentence-to-sentence transitions. There have been also video-sentence works (e.g. [23, 32]); our key
novelty is that we explicitly include the coherence model. Unlike videos, consecutive images in the
streams may show sharp changes of visual content, which cause the abrupt discontinuity between
consecutive sentences. Thus the coherence model is more demanded to make output passages fluent.

Many recent works have exploited multimodal networks that combine deep convolutional neural net-
works (CNN) [13] and recurrent neural network (RNN) [20]. Notable architectures in this category
integrate the CNN with bidirectional RNNs [9], long-term recurrent convolutional nets [5], long-
short term memory nets [30], deep Boltzmann machines [27], dependency-tree RNN [26], and other
variants of multimodal RNNs [3, 19]. Although our method partly take advantage of such recent
progress of multimodal neural networks, our major novelty is that we integrate it with the coherence
model as a unified end-to-end architecture to retrieve fluent sequential multiple sentences.

In the following, we compare more previous work that bears a particular resemblance to ours.
Among multimodal neural network models, the long-term recurrent convolutional net [5] is related
to our objective because their framework explicitly models the relations between sequential inputs
and outputs. However, the model is applied to a video description task of creating a sentence for a
given short video clip and does not address the generation of multiple sequential sentences. Hence,
unlike ours, there is no mechanism for the coherence between sentences. The work of [11] addresses
the retrieval of image sequences for a query paragraph, which is the opposite direction of our prob-
lem. They propose a latent structural SVM framework to learn the semantic relevance relations from
text to image sequences. However, their model is specialized only for the image sequence retrieval,
and thus not applicable to the natural sentence generation.

Contributions. We highlight main contributions of this paper as follows. (1) To the best of our
knowledge, this work is the first to address the problem of expressing image streams with sentence
sequences. We extend both input and output to more elaborate forms with respect to a whole body
of existing methods: image streams instead of individual images and sentence sequences instead of
individual sentences. (2) We develop a multimodal architecture of coherent recurrent convolutional
networks (CRCN), which integrates convolutional networks for image representation, recurrent net-
works for sentence modeling, and the local coherence model for fluent transitions of sentences. (3)
We evaluate our method with large datasets of unstructured blog posts, consisting of 20K blog posts
with 140K associated images. With both quantitative evaluation and user studies, we show that our
approach is more successful than other state-of-the-art alternatives in verbalizing an image stream.
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2 Text-Image Parallel Dataset from Blog Posts
We discuss how to transform blog posts to a training set B of image-text parallel data streams, each
of which is a sequence of image-sentence pairs: Bl = {(I l1, T l

1),· · ·, (I lN l , T
l
N l)}∈B. The training

set size is denoted by L = |B|. Fig.2.(a) shows the summary of pre-processing steps for blog posts.

2.1 Blog Pre-processing

We assume that blog authors augment their text with multiple images in a semantically meaningful
manner. In order to decompose each blog into a sequence of images and associated text, we first
perform text segmentation and then text summarization. The purpose of text segmentation is to
divide the input blog text into a set of text segments, each of which is associated with a single
image. Thus, the number of segments is identical to the number of images in the blog. The objective
of text summarization is to reduce each text segment into a single key sentence. As a result of these
two processes, we can transform each blog into a form of Bl = {(I l1, T l

1 ), · · · , (I lN l , T l
N l)}.

Text segmentation. We first divide the blog passage into text blocks according to paragraphs. We
apply a standard paragraph tokenizer of NLTK [2] that uses rule-based regular expressions to detect
paragraph divisions. We then use the heuristics based on the image-to-text block distances proposed
in [10]. Simply, we assign each text block to the image that has the minimum index distance where
each text block and image is counted as a single index distance in the blog.

Text summarization. We summarize each text segment into a single key sentence. We apply the
Latent Semantic Analysis (LSA)-based summarization method [4], which uses the singular value
decomposition to obtain the concept dimension of sentences, and then recursively finds the most
representative sentences that maximize the inter-sentence similarity for each topic in a text segment.

Data augmentation. The data augmentation is a well-known technique for convolutional neural
networks to improve image classification accuracies [13]. Its basic idea is to artificially increase
the number of training examples by applying transformations, horizontal reflection or adding noise
to training images. We empirically observe that this idea leads better performance in our problem
as well. For each image-sentence sequence Bl = {(I l1, T l

1), · · · , (I lN l , T
l
N l)}, we augment each

sentence T l
n with multiple sentences for training. That is, when we perform the LSA-based text

summarization, we select top-κ highest ranked summary sentences, among which the top-ranked
one becomes the summary sentence for the associated image, and all the top-κ ones are used for
training in our model. With a slight abuse of notation, we let T l

n to denote both the single summary
sentence and κ augmented sentences. We choose κ = 3 after thorough empirical tests.

2.2 Text Description

Once we represent each text segment with κ sentences, we extract the paragraph vector [17] to rep-
resent the content of text. The paragraph vector is a neural-network based unsupervised algorithm
that learns fixed-length feature representation from variable-length pieces of passage. We learn 300-
dimensional dense vector representation separately from the two classes of the blog dataset using
the gensim doc2vec code. We use pn to denote the paragraph vector representation for text Tn.
We then extract a parsed tree for each Tn to identify coreferent entities and grammatical roles of the
words. We use the Stanford core NLP library [18]. The parse trees are used for the local coherence
model, which will be discussed in section 3.2.

3 Our Architecture

Many existing sentence generation models (e.g. [9, 19]) combine words or phrases from training
data to generate a sentence for a novel image. Our approach is one level higher; we use sentences
from training database to author a sequence of sentences for a novel image stream. Although our
model can be easily extended to use words or phrases as basic building blocks, such granularity
makes sequences too long to train the language model, which may cause several difficulties for
learning the RNN models. For example, the vanishing gradient effect is a well-known hardship to
backpropagate an error signal through a long-range temporal interval. Therefore, we design our
approach that retrieves individual candidate sentences for each query image from training database
and crafts a best sentence sequence, considering both the fitness of individual image-to-sentence
pairs and coherence between consecutive sentences.
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Figure 2: Illustration of (a) pre-processing steps of blog posts, and (b) the proposed CRCN architecture.

Fig.2.(b) illustrates the structure of our CRCN. It consists of three main components, which are
convolutional neural networks (CNN) [13] for image representation, bidirectional recurrent neural
networks (BRNN) [24] for sentence sequence modeling, and the local coherence model [1] for a
smooth flow of multiple sentences. Each data stream is a variable-length sequence denoted by
{(I1, T1), · · · , (IN , TN )}. We use t ∈ {1, · · · , N} to denote a position of a sentence/image in a
sequence. We define the CNN and BRNN model for each position separately, and the coherent
model for a whole data stream. For the CNN component, our choice is the VGGNet [25] that
represents images as 4,096-dimensional vectors. We discuss the details of our BRNN and coherence
model in section 3.1 and section 3.2 respectively, and finally present how to combine the output of
the three components to create a single compatibility score in section 3.3.

3.1 The BRNN Model

The role of BRNN model is to represent a content flow of text sequences. In our problem, the BRNN
is more suitable than the normal RNN, because the BRNN can simultaneously model forward and
backward streams, which allow us to consider both previous and next sentences for each sentence to
make the content of a whole sequence interact with one another. As shown in Fig.2.(b), our BRNN
has five layers: input layer, forward/backward layer, output layer, and ReLU activation layer, which
are finally merged with that of the coherent model into two fully connected layers. Note that each
text is represented by 300-dimensional paragraph vector pt as discussed in section 2.2. The exact
form of our BRNN is as follows. See Fig.2.(b) together for better understanding.

xft = f(W f
i pt + bfi ); xbt = f(W b

i pt + bbi ); (1)

hft = f(xft +Wfh
f
t−1 + bf ); h

b
t = f(xbt +Wbh

b
t+1 + bb); ot =Wo(h

f
t + hbt) + bo.

The BRNN takes a sequence of text vectors pt as input. We then compute xft and xbt , which are the
activations of input units to forward and backward units. Unlike other BRNN models, we separate
the input activation into forward and backward ones with different sets of parameters W f

i and W b
i ,

which empirically leads a better performance. We set the activation function f to the Rectified
Linear Unit (ReLU), f(x) = max(0, x). Then, we create two independent forward and backward
hidden units, denoted by hft and hbt . The final activation of the BRNN ot can be regarded as a
description for the content of the sentence at location t, which also implicitly encodes the flow of
the sentence and its surrounding context in the sequence. The parameter sets to learn include weights
{W f

i ,W
b
i ,Wf ,Wb,Wo} ∈ R300×300 and biases {bfi , bbi , bf , bb, bo} ∈ R300×1.

3.2 The Local Coherence Model

The BRNN model can capture the flow of text content, but it lacks learning the coherence of passage
that reflects distributional, syntactic, and referential information between discourse entities. Thus,
we explicitly include a local coherence model based on the work of [1], which focuses on resolving
the patterns of local transitions of discourse entities (i.e. coreferent noun phrases) in the whole
text. As shown in Fig.2.(b), we first extract parse trees for every summarized text denoted by Zt

and then concatenate all sequenced parse trees into one large one, from which we make an entity
grid for the whole sequence. The entity grid is a table where each row corresponds to a discourse
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entity and each column represents a sentence. Grammatical role are expressed by three categories
and one for absent (i.e. not referenced in the sentence): S (subjects), O (objects), X (other than
subject or object) and −(absent). After making the entity grid, we enumerate the transitions of the
grammatical roles of entities in the whole text. We set the history parameter to three, which means
we can obtain 43 = 64 transition descriptions (e.g. SO− or OOX). By computing the ratio of
the occurrence frequency of each transition, we finally create a 64-dimensional representation that
captures the coherence of a sequence. Finally, we make this descriptor to a 300-dimensional vector
by zero-padding, and forward it to ReLU layer as done for the BRNN output.

3.3 Combination of CNN, RNN, and Coherence Model

After the ReLU activation layers of the RNN and the coherence model, their output (i.e. {ot}Nt=1 and
q) goes through two fully connected (FC) layers, whose role is to decide a proper combination of the
BRNN language factors and the coherence factors. We drop the bias terms for the fully-connected
layers, and the dimensions of variables are Wf1 ∈ R512×300,Wf2 ∈ R4,096×512 , ot, q ∈ R300×1 ,
st, g ∈ R4,096×1, O ∈ R300×N , and S ∈ R4,096×N .

O = [o1|o2|..|oN ]; S = [s1|s2|..|sN ]; Wf2Wf1[O|q] = [S|g]. (2)

We use the shared parameters for O and q so that the output mixes well the interaction between the
content flows and coherency. In our tests, joint learning outperforms learning the two terms with
separate parameters. Note that the multiplication Wf2Wf1 of the last two FC layers does not reduce
to a single linear mapping, thanks to dropout. We assign 0.5 and 0.7 dropout rates to the two layers.
Empirically, it improves generalization performance much over a single FC layer with dropout.

3.4 Training the CRCN

To train our CRCN model, we first define the compatibility score between an image stream and a
paragraph sequence. While our score function is inspired by Karpathy et al. [9], there are two major
differences. First, the score function of [9] deals between sentence fragments and image fragments,
and thus the algorithm considers all combinations between them to find out the best matching. On
the other hand, we define the score by an ordered and paired compatibility between a sentence
sequence and an image sequence. Second, we also add the term that measures the relevance relation
of coherency between an image sequence and a text sequence. Finally, the score Skl for a sentence
sequence k and an image stream l is defined by

Skl =
∑

t=1...N

skt · vlt + gk · vlt (3)

where vlt denotes the CNN feature vector for t-th image of stream l. We then define the cost function
to train our CRCN model as follows [9].

C(θ) =
∑
k

[∑
l

max(0, 1 + Skl − Skk) +
∑
l

max(0, 1 + Slk − Skk)
]
, (4)

where Skk denotes the score between a training pair of corresponding image and sentence sequence.
The objective, based on the max-margin structured loss, encourages aligned image-sentence se-
quence pairs to have a higher score by a margin than misaligned pairs. For each positive training
example, we randomly sample 100 ne examples from the training set. Since each contrastive exam-
ple has a random length, and is sampled from the dataset of a wide range of content, it is extremely
unlikely that the negative examples have the same length and the same content order of sentences
with positive examples.

Optimization. We use the backpropagation through time (BPTT) algorithm [31] to train our model.
We apply the stochastic gradient descent (SGD) with mini-batches of 100 data streams. Among
many SGD techniques, we select RMSprop optimizer [28], which leads the best performance in
our experiments. We initialize the weights of our CRCN model using the method of He et al. [7],
which is robust in deep rectified models. We observe that it is better than a simple Gaussian random
initialization, although our model is not extremely deep. We use dropout regularization in all layers
except the BRNN, with 0.7 dropout for the last FC layer and 0.5 for the other remaining layers.
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3.5 Retrieval of Sentence Sequences

At test time, the objective is to retrieve a best sentence sequence for a given query image stream
{Iq1, · · · , IqN}. First, we select K-nearest images for each query image from training database us-
ing the `2-distance on the CNN VGGNet fc7 features [25]. In our experiments K = 5 is successful.
We then generate a set of sentence sequence candidates C by concatenating the sentences associated
with the K-nearest images at each location t. Finally, we use our learned CRCN model to compute
the compatibility score between the query image stream and each sequence candidate, according to
which we rank the candidates.

However, one major difficulty of this scenario is that there are exponentially many candidates (i.e.
|C| = KN ). To resolve this issue, we use an approximate divide-and-conquer strategy; we recur-
sively halve the problem into subproblems, until the size of the subproblem is manageable. For
example, if we halve the search candidate length Q times, then the search space of each subproblem
becomes KN/2Q . Using the beam search idea, we first find the top-M best sequence candidates in
the subproblem of the lowest level, and recursively increase the candidate lengths while the max-
imum candidate size is limited to M . We set M = 50. Though it is an approximate search, our
experiments assure that it achieves almost optimal solutions with plausible combinatorial search,
mainly because the local fluency and coherence is undoubtedly necessary for the global one. That
is, in order for a whole sentence sequence to be fluent and coherent, its any subparts must be as well.

4 Experiments

We compare the performance of our approach with other state-of-the-art candidate methods via
quantitative measures and user studies using Amazon Mechanical Turk (AMT). Please refer to the
supplementary material for more results and the details of implementation and experimental setting.

4.1 Experimental Setting

Dataset. We collect blog datasets of the two topics: NYC and Disneyland. We reuse the blog data
of Disneyland from the dataset of [11], and newly collect the data of NYC, using the same crawling
method with [11], in which we first crawl blog posts and their associated pictures from two popular
blog publishing sites, BLOGSPOT and WORDPRESS by changing query terms from Google search.
Then, we manually select the travelogue posts that describe stories and events with multiple images.
Finally, the dataset includes 11,863 unique blog posts and 78,467 images for NYC and 7,717 blog
posts and 60,545 images for Disneyland.

Task. For quantitative evaluation, we randomly split our dataset into 80% as a training set, 10% as
a validation, and the others as a test set. For each test post, we use the image sequence as a query
Iq and the sequence of summarized sentences as groundtruth TG. Each algorithm retrieves the best
sequences from training database for a query image sequence, and ideally the retrieved sequences
match well with TG. Since the training and test data are disjoint, each algorithm can only retrieve
similar (but not identical) sentences at best.

For quantitative measures, we exploit two types of metrics of language similarity (i.e. BLEU [22],
CIDEr [29], and METEOR [16] scores) and retrieval accuracies (i.e. top-K recall and median rank),
which are popularly used in text generation literature [8, 9, 19, 26]. The top-K recall R@K is
the recall rate of a groundtruth retrieval given top K candidates, and the median rank indicates the
median ranking value of the first retrieved groundtruth. A better performance is indicated by higher
BLEU, CIDEr, METEOR, R@K scores, and lower median rank values.

Baselines. Since the sentence sequence generation from image streams has not been addressed yet
in previous research, we instead extend several state-of-the-art single-sentence models that have
publicly available codes as baselines, including the log-bilinear multimodal models by Kiros et
al. [12], and recurrent convolutional models by Karpathy et al. [9] and Vinyals et al. [30]. For
[12], we use the three variants introduced in the paper, which are the standard log-bilinear model
(LBL), and two multi-modal extensions: modality-based LBL (MLBL-B) and factored three-way
LBL (MLBL-F). We use the NeuralTalk package authored by Karpathy et al. for the baseline
of [9] denoted by (CNN+RNN), and [30] denoted by (CNN+LSTM). As the simplest baseline, we
also compare with the global matching (GloMatch) in [21]. For all the baselines, we create final
sentence sequences by concatenating the sentences generated for each image in the query stream.

6



Language metrics Retrieval metrics
B-1 B-2 B-3 B-4 CIDEr METEOR R@1 R@5 R@10 MedRank

New York City
(CNN+LSTM) [30] 16.24 5.79 1.38 0.10 9.1 5.73 0.95 7.38 13.33 88.5

(CNN+RNN) [9] 6.21 0.01 0.00 0.00 0.5 1.34 0.48 2.86 4.29 120.5
(MLBL-F) [12] 21.03 1.92 0.12 0.01 4.3 6.03 0.71 4.52 7.86 87.0
(MLBL-B) [12] 20.43 1.54 0.09 0.01 2.6 5.30 0.48 3.57 5.48 101.5

(LBL) [12] 20.96 1.68 0.08 0.01 2.6 5.29 1.19 4.52 7.38 100.5
(GloMatch) [21] 19.00 1.59 0.04 0.0 2.80 5.17 0.24 2.62 4.05 95.00

(1NN) 25.97 3.42 0.60 0.22 15.9 7.06 5.95 13.57 20.71 63.50
(RCN) 27.09 5.45 2.56 2.10 33.5 7.87 3.80 18.33 30.24 29.00

(CRCN) 26.83 5.37 2.57 2.08 30.9 7.69 11.67 31.19 43.57 14.00
Disneyland

(CNN+LSTM) [30] 13.22 1.56 0.40 0.07 10.0 4.51 2.83 10.38 16.98 61.5
(CNN+RNN) [9] 6.04 0.00 0.00 0.00 0.4 1.34 1.02 3.40 5.78 88.0
(MLBL-F) [12] 15.75 1.61 0.07 0.01 4.9 7.12 0.68 4.08 10.54 63.0
(MLBL-B) [12] 15.65 1.32 0.05 0.00 3.8 5.83 0.34 2.72 6.80 69.0

(LBL) [12] 18.94 1.70 0.06 0.01 3.4 4.99 1.02 4.08 7.82 62.0
(GloMatch) [21] 11.94 0.37 0.01 0.00 2.2 4.31 2.04 5.78 7.48 73.0

(1NN) 25.92 3.34 0.71 0.38 19.5 7.46 9.18 19.05 27.21 45.0
(RCN) 28.15 6.84 4.11 3.52 51.3 8.87 5.10 20.07 28.57 29.5

(CRCN) 28.40 6.88 4.11 3.49 52.7 8.78 14.29 31.29 43.20 16.0
Table 1: Evaluation of sentence generation for the two datasets, New York City and Disneyland, with language
similarity metrics (BLEU) and retrieval metrics (R@K, median Rank). A better performance is indicated by
higher BLEU, CIDEr, METEOR, R@K scores, and lower median rank values.

We also compare between different variants of our method to validate the contributions of key com-
ponents of our method. We test the K-nearest search (1NN) without the RNN part as the simplest
variant; for each image in a test query, we find its K(= 1) most similar training images and simply
concatenate their associated sentences. The second variant is the BRNN-only method denoted by
(RCN) that excludes the entity-based coherence model from our approach. Our complete method is
denoted by (CRCN), and this comparison quantifies the improvement by the coherence model. To be
fair, we use the same VGGNet fc7 feature [25] for all the algorithms.

4.2 Quantitative Results

Table 1 shows the quantitative results of experiments using both language and retrieval metrics.
Our approach (CRCN) and (RCN) outperform, with large margins, other state-of-the-art baselines,
which generate passages without consideration of sentence-to-sentence transitions unlike ours. The
(MLBL-F) shows the best performance among the three models of [12] albeit with a small margin,
partly because they share the same word dictionary in training. Among mRNN-based models, the
(CNN+LSTM) significantly outperforms the (CNN+RNN), because the LSTM units help learn models
from irregular and lengthy data of natural blogs more robustly.

We also observe that (CRCN) outperforms (1NN) and (RCN), especially with the retrieval metrics.
It shows that the integration of two key components, the BRNN and the coherence model, indeed
contributes the performance improvement. The (CRCN) is only slightly better than the (RCN) in lan-
guage metrics but significantly better in retrieval metrics. It means that (RCN) is fine with retrieving
fairly good solutions, but not good at ranking the only correct solution high compared to (CRCN).
The small margins in language metrics are also attributed by their inherent limitation; for example,
the BLEU focuses on counting the matches of n-gram words and thus is not good at comparing
between sentences, even worse between paragraphs for fully evaluating their fluency and coherency.

Fig.3 illustrates several examples of sentence sequence retrieval. In each set, we show a query
image stream and text results created by our method and baselines. Except Fig.3.(d), we show parts
of sequences because they are rather long for illustration. These qualitative examples demonstrate
that our approach is more successful to verbalize image sequences that include a variety of content.

4.3 User Studies via Amazon Mechanical Turk

We perform user studies using AMT to observe general users’ preferences between text sequences
by different algorithms. Since our evaluation involves multiple images and long passages of text, we
design our AMT task to be sufficiently simple for general turkers with no background knowledge.
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Figure 3: Examples of sentence sequence retrieval for NYC (top) and Disneyland (bottom). In each set, we
present a part of a query image stream, and its corresponding text output by our method and a baseline.

Baselines (GloMatch) (CNN+LSTM) (MLBL-B) (RCN) (RCN N>=8)
NYC 92.7% (139/150) 80.0% (120/150) 69.3% (104/150) 54.0% (81/150) 57.0% (131/230)

Disneyland 95.3% (143/150) 82.0% (123/150) 70.7% (106/150) 56.0% (84/150) 60.1% (143/238)

Table 2: The results of AMT pairwise preference tests. We present the percentages of responses that turkers
vote for our (CRCN) over baselines. The length of query streams is 5 except the last column, which has 8–10.

We first randomly sample 100 test streams from the two datasets. We first set the maximum number
of images per query to 5. If a query is longer than that, we uniformly sample it to 5. In an AMT
test, we show a query image stream Iq , and a pair of passages generated by our method (CRCN) and
one baseline in a random order. We ask turkers to choose more agreed text sequence with Iq . We
design the test as a pairwise comparison instead of a multiple-choice question to make answering
and analysis easier. The questions look very similar to the examples of Fig.3. We obtain answers
from three different turkers for each query. We compare with four baselines; we choose (MLBL-B)
among the three variants of [12], and (CNN+LSTM) among mRNN-based methods. We also select
(GloMatch), and (RCN) as the variants of our method.

Table 2 shows the results of AMT tests, which validate that AMT annotators prefer our results to
those of baselines. The (GloMatch) is the worst because it uses too weak image representation
(i.e. GIST and Tiny images). The differences between (CRCN) and (RCN) (i.e. 4th column of Table
2) are not as significant as previous quantitative measures, mainly because our query image stream
is sampled to relatively short 5. The coherence becomes more critical as the passage is longer. To
justify this argument, we run another set of AMT tests in which we use 8–10 images per query. As
shown in the last column of Table 2, the performance margins between (CRCN) and (RCN) become
larger as the lengths of query image streams increase. This result assures that as passages are longer,
the coherence becomes more important, and thus (CRCN)’s output is more preferred by turkers.

5 Conclusion
We proposed an approach for retrieving sentence sequences for an image stream. We developed
coherent recurrent convolutional network (CRCN), which consists of convolutional networks, bidi-
rectional recurrent networks, and entity-based local coherence model. With quantitative evaluation
and users studies using AMT on large collections of blog posts, we demonstrated that our CRCN
approach outperformed other state-of-the-art candidate methods.
Acknowledgements. This research is partially supported by Hancom and Basic Science Research
Program through National Research Foundation of Korea (2015R1C1A1A02036562).
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