Deep Temporal Sigmoid Belief Networks
for Sequence Modeling

Zhe Gan, Chunyuan Li, Ricardo Henao, David Carlson and Lawrence Carin
Department of Electrical and Computer Engineering
Duke University, Durham, NC 27708
{zhe .gan, chunyuan.li, r.henao, david.carlson, lcarin}@duke .edu

Abstract

Deep dynamic generative models are developed to learn sequential dependencies
in time-series data. The multi-layered model is designed by constructing a hierar-
chy of temporal sigmoid belief networks (TSBNs), defined as a sequential stack
of sigmoid belief networks (SBNs). Each SBN has a contextual hidden state,
inherited from the previous SBNs in the sequence, and is used to regulate its hid-
den bias. Scalable learning and inference algorithms are derived by introducing
a recognition model that yields fast sampling from the variational posterior. This
recognition model is trained jointly with the generative model, by maximizing its
variational lower bound on the log-likelihood. Experimental results on bouncing
balls, polyphonic music, motion capture, and text streams show that the proposed
approach achieves state-of-the-art predictive performance, and has the capacity to
synthesize various sequences.

1 Introduction

Considerable research has been devoted to developing probabilistic models for high-dimensional
time-series data, such as video and music sequences, motion capture data, and text streams. Among
them, Hidden Markov Models (HMMs) [1] and Linear Dynamical Systems (LDS) [2] have been
widely studied, but they may be limited in the type of dynamical structures they can model. An
HMM is a mixture model, which relies on a single multinomial variable to represent the history of a
time-series. To represent IV bits of information about the history, an HMM could require 2%V distinct
states. On the other hand, real-world sequential data often contain complex non-linear temporal
dependencies, while a LDS can only model simple linear dynamics.

Another class of time-series models, which are potentially better suited to model complex probabil-
ity distributions over high-dimensional sequences, relies on the use of Recurrent Neural Networks
(RNNGs) [13L 14415, 6], and variants of a well-known undirected graphical model called the Restricted
Boltzmann Machine (RBM) [7, 18, 9} [10, [11]. One such variant is the Temporal Restricted Boltz-
mann Machine (TRBM) [8], which consists of a sequence of RBMs, where the state of one or more
previous RBMs determine the biases of the RBM in the current time step. Learning and inference in
the TRBM is non-trivial. The approximate procedure used in [8] is heuristic and not derived from a
principled statistical formalism.

Recently, deep directed generative models [[12} 113 (14, [15] are becoming popular. A directed graph-
ical model that is closely related to the RBM is the Sigmoid Belief Network (SBN) [L6]. In the work
presented here, we introduce the Temporal Sigmoid Belief Network (TSBN), which can be viewed
as a temporal stack of SBNs, where each SBN has a contextual hidden state that is inherited from
the previous SBNs and is used to adjust its hidden-units bias. Based on this, we further develop
a deep dynamic generative model by constructing a hierarchy of TSBNs. This can be considered

Time Time

O—

(a) Generative model

A L

(c) Generative model (d) Recognition model

(b) Recognition model

. J

Figure 1: Graphical model for the Deep Temporal Sigmoid Belief Network. (a,b) Generative and recognition
model of the TSBN. (c,d) Generative and recognition model of a two-layer Deep TSBN.

as a deep SBN [15] with temporal feedback loops on each layer. Both stochastic and deterministic
hidden layers are considered.

Compared with previous work, our model: (i) can be viewed as a generalization of an HMM with
distributed hidden state representations, and with a deep architecture; (ii) can be seen as a gener-
alization of a LDS with complex non-linear dynamics; (iii) can be considered as a probabilistic
construction of the traditionally deterministic RNN; (iv) is closely related to the TRBM, but it has a
fully generative process, where data are readily generated from the model using ancestral sampling;
(v) can be utilized to model different kinds of data, e.g., binary, real-valued and counts.

The “explaining away” effect described in [[17] makes inference slow, if one uses traditional in-
ference methods. Another important contribution we present here is to develop fast and scalable
learning and inference algorithms, by introducing a recognition model [[12} 13| [14], that learns an
inverse mapping from observations to hidden variables, based on a loss function derived from a vari-
ational principle. By utilizing the recognition model and variance-reduction techniques from [[13],
we achieve fast inference both at training and testing time.

2 Model Formulation

2.1 Sigmoid Belief Networks

Deep dynamic generative models are considered, based on the Sigmoid Belief Network (SBN) [16].
An SBN is a Bayesian network that models a binary visible vector v € {0, 1}, in terms of binary
hidden variables h € {0,1}” and weights W € RM>* with

p(vm = 1|h) = U(w;rnh + Cm)v p(hj = 1) = U(bj)a (D

where v = [v1,...,vn]", b = [h1,...,hs]T, W = [wy,...,wy]", ¢ = [c1,...,cm] T,
b = [b1,...,bs]T, and the logistic function, o(z) = 1/(1 + e~*). The parameters W, b and ¢
characterize all data, and the hidden variables, h, are specific to particular visible data, v.

The SBN is closely related to the RBM [18]], which is a Markov random field with the same bipar-
tite structure as the SBN. The RBM defines a distribution over a binary vector that is proportional
to the exponential of its energy, defined as —E(v,h) = v'c+ v Wh + h'b. The conditional
distributions, p(v|h) and p(h|v), in the RBM are factorial, which makes inference fast, while pa-
rameter estimation usually relies on an approximation technique known as Contrastive Divergence
(CD) [18].

The energy function of an SBN may be written as —E(v,h) = v c+v' Wh+h'b-)" log(1+
exp(w, h + ¢,,)). SBNs explicitly manifest the generative process to obtain data, in which the
hidden layer provides a directed “explanation” for patterns generated in the visible layer. However,
the “explaining away” effect described in [17] makes inference inefficient, the latter can be alleviated

by exploiting recent advances in variational inference methods [13].

2.2 Temporal Sigmoid Belief Networks

The proposed Temporal Sigmoid Belief Network (TSBN) model is a sequence of SBNs arranged
in such way that at any given time step, the SBN’s biases depend on the state of the SBNs in the
previous time steps. Specifically, assume we have a length-7" binary visible sequence, the tth time
step of which is denoted v; € {0,1}*. The TSBN describes the joint probability as

T
po(V,H) = p(h1)p(vilha) - [[p(hulhi1,v01) - plvil e, 0i1),)

t=2

where V = [vy,...,v7], H = [hy,...,hr)], and each h; € {0,1}” represents the hidden state

corresponding to time step ¢. For £ = 1,...,T, each conditional distribution in (2)) is expressed as
p(hje = Uhi—1,v-1) = o(wi;hey +wg;v1 +by), 3)
P(vme = ke, v1) = 0(wy,, by + W, v 1 +), 4)

where hg and vg, needed for the prior model p(hy) and p(vi|hy), are defined as zero vectors,
respectively, for conciseness. The model parameters, 6, are specified as W; € R7*J, W, €
RMXJ W3 € R7*M W, ¢ RMXM Fori=1,2,3,4, w;; is the transpose of the jth row of W,
and ¢ = [c1,...,cp]" and b = [by,...,bs]T are bias terms. The graphical model for the TSBN is
shown in Figure [I[a).

By setting W3 and Wy to be zero matrices, the TSBN can be viewed as a Hidden Markov Model
[1]] with an exponentially large state space, that has a compact parameterization of the transition and
the emission probabilities. Specifically, each hidden state in the HMM is represented as a one-hot
length-J vector, while in the TSBN, the hidden states can be any length-.J binary vector. We note
that the transition matrix is highly structured, since the number of parameters is only quadratic w.r1.
J. Compared with the TRBM [8]], our TSBN is fully directed, which allows for fast sampling of
“fantasy” data from the inferred model.

2.3 TSBN Variants

Modeling real-valued data The model above can be readily extended to model real-valued se-
quence data, by substituting (4) with p(v;|hs, v,—1) = N (e, diag(o?)), where

T T 2 / T / T /
Hmt = meht + Wy, Vi—1 + Cm,y 10g Omt = (wQ'm) h‘t + (w4m) Vi—1 + Cpps ®)

and fi,,¢ and o2, are elements of u; and o2, respectively. W) and W, are of the same size of

W, and W, respectively. Compared with the Gaussian TRBM [9], in which o, is fixed to 1, our
formalism uses a diagonal matrix to parameterize the variance structure of v;.

Modeling count data We also introduce an approach for modeling time-series data with count
observations, by replacing @) with p(vi|he, vio1) = Hf\le Yyt where
exp(wg, h; +wj, vi 1+ cp)

ymt = M .
T T
Zm’:l eXp(wzm/ hy +w,, v 1+ Cm?)

(6)

This formulation is related to the Replicated Softmax Model (RSM) described in [19], however, our
approach uses a directed connection from the binary hidden variables to the visible counts, while
also learning the dynamics in the count sequences.

Furthermore, rather than assuming that h; and v; only depend on h;_; and v;_1, in the experiments,
we also allow for connections from the past n time steps of the hidden and visible states, to the
current states, h, and v;. A sliding window is then used to go through the sequence to obtain n
frames at each time. We refer to n as the order of the model.

2.4 Deep Architecture for Sequence Modeling with TSBNs

Learning the sequential dependencies with the shallow model in (2)-() may be restrictive. There-
fore, we propose two deep architectures to improve its representational power: (7) adding stochastic
hidden layers; (ii) adding deterministic hidden layers. The graphical model for the deep TSBN

is shown in Figure c). Specifically, we consider a deep TSBN with hidden layers hi‘” for
t=1,...,Tand ¢ = 1,..., L. Assume layer ¢ contains J® hidden units, and denote the visi-

ble layer v, = hio) and let hELH) = 0, for convenience. In order to obtain a proper generative
model, the top hidden layer h(X) contains stochastic binary hidden variables.

For the middle layers, £ = 1, ..., L—1, if stochastic hidden layers are utilized, the generative process
O] -
is expressed as p(hy)) = szl p(h%) |h§é+1), h?_’l, hﬁf_f)), where each conditional distribution

is parameterized via a logistic function, as in (). If deterministic hidden layers are employed,
we obtain hge) =f (hEZH), hﬁ?l, hﬁé_}”), where f(-) is chosen to be a rectified linear function.
Although the differences between these two approaches are minor, learning and inference algorithms
can be quite different, as shown in Section[3.3]

3 Scalable Learning and Inference

Computation of the exact posterior over the hidden variables in (@) is intractable. Approximate
Bayesian inference, such as Gibbs sampling or mean-field variational Bayes (VB) inference, can
be implemented [15, [16]. However, Gibbs sampling is very inefficient, due to the fact that the
conditional posterior distribution of the hidden variables does not factorize. The mean-field VB
indeed provides a fully factored variational posterior, but this technique increases the gap between
the bound being optimized and the true log-likelihood, potentially resulting in a poor fit to the data.
To allow for tractable and scalable inference and parameter learning, without loss of the flexibility of
the variational posterior, we apply the Neural Variational Inference and Learning (NVIL) algorithm
described in [[13]].

3.1 Variational Lower Bound Objective

We are interested in training the TSBN model, pg(V,H), described in , with parameters 6.
Given an observation V, we introduce a fixed-form distribution, ¢4 (H|V'), with parameters ¢, that
approximates the true posterior distribution, p(H|V). We then follow the variational principle to
derive a lower bound on the marginal log-likelihood, expressed asE]
L(V,0,¢) =E,,wuv)llogpe(V,H) —log qu(H|V)]. @)
We construct the approximate posterior g4 (H|V) as a recognition model. By using this, we avoid
the need to compute variational parameters per data point; instead we compute a set of parameters
¢ used for all V. In order to achieve fast inference, the recognition model is expressed as
T
4o(H|V) = q(ha|vy) - [a(helhi—1,v1,001) ®)
t=2
and each conditional distribution is specified as
q(hje = Uhi—1,v0,001) = o(u) Ryt + ug v + ugve1 +d;) 9)
where hy and v, for ¢(hq|v1), are defined as zero vectors. The recognition parameters ¢ are
specified as Uy € R7*7, Uy € R7*M U3 € R/”*M_ Fori = 1,2, 3, uy; is the transpose of the jth
row of U;, and d = [dy,...,d]" is the bias term. The graphical model is shown in Figure b).

The recognition model defined in (9) has the same form as in the approximate inference used for the
TRBM [8]]. Exact inference for our model consists of a forward and backward pass through the entire
sequence, that requires the traversing of each possible hidden state. Our feedforward approximation
allows the inference procedure to be fast and implemented in an online fashion.

3.2 Parameter Learning

To optimize (7)), we utilize Monte Carlo methods to approximate expectations and stochastic gradient
descent (SGD) for parameter optimization. The gradients can be expressed as

VoL(V) =E,,#v)[Velogpe(V,H)|, (10)
V¢£(V) = Eq¢(H|V) [(logpg(v, H) — log qd,(H‘V)) X V¢ log qd,(H\V)] (1 1)

"This lower bound is equivalent to the marginal log-likelihood if g4 (H|V) = p(H|V).

Specifically, in the TSBN model, if we define ¥,y = o(w,,, b + w,,,vi 1 + ¢n) and ﬁjt =
J(ulTj hi{_1+ ugjvt + ugjvt_l + d;), the gradients for wo,, and us; can be calculated as

T T
A 01 H|V A
= E (Vmt = Ome) - hyjt, oz 44 (V) = E (hjt = hjt) - Ume. (12)

U s
t=1 uzjm =1

0logpe(V,H)
8w2mj

Other update equations, along with the learning details for the TSBN variants in Section [2.3] are
provided in the Supplementary Section B. We observe that the gradients in and share many
similarities with the wake-sleep algorithm [20]. Wake-sleep alternates between updating 6 in the
wake phase and updating ¢ in the sleep phase. The update of € is based on the samples generated
from ¢4 (H|V), and is identical to . However, in contrast to (11)), the recognition parameters ¢
are estimated from samples generated by the model, i.e., V4 L(V) = E,,, (v 1) [V log 4 (H|V)].
This update does not optimize the same objective as in (I0), hence the wake-sleep algorithm is not
guaranteed to converge [13].

Inspecting (1), we see that we are using l(V, H) = log pe(V, H) —log g4 (H|V) as the learning
signal for the recognition parameters ¢. The expectation of this learning signal is exactly the lower
bound (7)), which is easy to evaluate. However, this tractability makes the estimated gradients of the
recognition parameters very noisy. In order to make the algorithm practical, we employ the variance
reduction techniques proposed in [13]], namely: (i) centering the learning signal, by subtracting the
data-independent baseline and the data-dependent baseline; (ii) variance normalization, by dividing
the centered learning signal by a running estimate of its standard deviation. The data-dependent
baseline is implemented using a neural network. Additionally, RMSprop [21]], a form of SGD where
the gradients are adaptively rescaled by a running average of their recent magnitude, were found
in practice to be important for fast convergence; thus utilized throughout all the experiments. The
outline of the NVIL algorithm is provided in the Supplementary Section A.

3.3 Extension to deep models

The recognition model corresponding to the deep TSBN is shown in Figure[I(d). Two kinds of deep
architectures are discussed in Section [2.4] We illustrate the difference of their learning algorithms
in two respects: (i) the calculation of the lower bound; and (ii) the calculation of the gradients.

The top hidden layer is stochastic. If the middle hidden layers are also stochastic, the calculation
of the lower bound is more involved, compared with the shallow model; however, the gradient
evaluation remain simple as in . On the other hand, if deterministic middle hidden layers (i.e.,
recurrent neural networks) are employed, the lower bound objective will stay the same as a shallow
model, since the only stochasticity in the generative process lies in the top layer; however, the
gradients have to be calculated recursively through the back-propagation through time algorithm
[22]. All details are provided in the Supplementary Section C.

4 Related Work

The RBM has been widely used as building block to learn the sequential dependencies in time-series
data, e.g., the conditional-RBM-related models [7} [23]], and the temporal RBM [8]]. To make exact
inference possible, the recurrent temporal RBM was also proposed [9], and further extended to learn
the dependency structure within observations [[11].

In the work reported here, we focus on modeling sequences based on the SBN [16]], which recently
has been shown to have the potential to build deep generative models [[13}[15}124]]. Our work serves
as another extension of the SBN that can be utilized to model time-series data. Similar ideas have
also been considered in [25]] and [26]. However, in [25]], the authors focus on grammar learning, and
use a feed-forward approximation of the mean-field VB to carry out the inference; while in [26], the
wake-sleep algorithm was developed. We apply the model in a different scenario, and develop a fast
and scalable inference algorithm, based on the idea of training a recognition model by leveraging
the stochastic gradient of the variational bound.

There exist two main methods for the training of recognition models. The first one, termed Stochas-
tic Gradient Variational Bayes (SGVB), is based on a reparameterization trick [12} [14], which can
be only employed in models with continuous latent variables, e.g., the variational auto-encoder [12]

Top: Generated from Piano midi 1

—— Topic 29
05 Nicaragua v. U.
ot¥ b N
1800 1850 1900 1950 2000
1
— Topic 30
0.5! u‘iVa’ of 1512 World War Il . Iraq Wa
. n N{ wAN
1800 1850 1900 1950 2000
1 3
— Topic 130
E—= - T 0.5] The age of American revolution
80 q o 1
1800 1850 1900 1950 2000

20 40 60 80 100 120 140 160 180

Figure 2: (Left) Dictionaries learned using the HMSBN for the videos of bouncing balls. (Middle)
Samples generated from the HMSBN trained on the polyphonic music. Each column is a sample
vector of notes. (Right) Time evolving from 1790 to 2014 for three selected topics learned from the
STU dataset. Plotted values represent normalized probabilities that the topic appears in a given year.
Best viewed electronically.

and all the recent recurrent extensions of it [27] [29]. The second one, called Neural Variational
Inference and Learning (NVIL), is based on the log-derivative trick [13]], which is more general and
can also be applicable to models with discrete random variables. The NVIL algorithm has been
previously applied to the training of SBN in [13]]. Our approach serves as a new application of this
algorithm for a SBN-based time-series model.

5 Experiments

We present experimental results on four publicly available datasets: the bouncing balls [9], poly-
phonic music [10], motion capture [[7] and state-of-the-Union [30]. To assess the performance of the
TSBN model, we show sequences generated from the model, and report the average log-probability
that the model assigns to a test sequence, and the average squared one-step-ahead prediction error per
frame. Code is available at https://github.com/zhegan27/TSBN_code_NIPS2015.

The TSBN model with W3 = 0 and W, = 0 is denoted Hidden Markov SBN (HMSBN), the deep
TSBN with stochastic hidden layer is denoted DTSBN-S, and the deep TSBN with deterministic
hidden layer is denoted DTSBN-D.

Model parameters were initialized by sampling randomly from N (0, 0.001%1), except for the bias
parameters, that were initialized as 0. The TSBN model is trained using a variant of RMSprop
[6], with momentum of 0.9, and a constant learning rate of 10~%. The decay over the root mean
squared gradients is set to 0.95. The maximum number of iterations we use is 10°. The gradient
estimates were computed using a single sample from the recognition model. The only regularization
we used was a weight decay of 10~%. The data-dependent baseline was implemented by using a
neural network with a single hidden layer with 100 tanh units.

For the prediction of v; given vy.4—1, we (i) first obtain a sample from q¢(h1:t,1\v1:t,1); (i)
calculate the conditional posterior pg(h¢|hi.+—1,v1.+—1) Of the current hidden state ; (iii) make a
prediction for v; using pg(v¢|h1.¢, v1.4—1). On the other hand, synthesizing samples is conceptually
simper. Sequences can be readily generated from the model using ancestral sampling.

5.1 Bouncing balls dataset

We conducted the first experiment on synthetic videos of 3 bouncing balls, where pixels are binary
valued. We followed the procedure in [9], and generated 4000 videos for training, and another 200
videos for testing. Each video is of length 100 and of resolution 30 x 30.

The dictionaries learned using the HMSBN are shown in Figure [2] (Left). Compared with previous
work [9, [10], our learned bases are more spatially localized. In Table [T} we compare the average
squared prediction error per frame over the 200 test videos, with recurrent temporal RBM (RTRBM)
and structured RTRBM (SRTRBM). As can be seen, our approach achieves better performance
compared with the baselines in the literature. Furthermore, we observe that a high-order TSBN
reduces the prediction error significantly, compared with an order-one TSBN. This is due to the fact

https://github.com/zhegan27/TSBN_code_NIPS2015

Table 1: Average prediction error for the bounc- Table 2: Average prediction error obtained for

ing balls dataset. (¢) taken from [[L1]]. the motion capture dataset. (¢) taken from [LT].
MODEL DIM ORDER PRED. ERR. MODEL WALKING RUNNING
DTSBN-s 100-100 2 2.79 + 0.39 DTSBN-s 4.40 + 0.28 2.56 + 0.40
DTSBN-D 100-100 2 2.99 +£0.42 DTSBN-D 4.62 +0.01 2.84 +£0.01
TSBN 100 4 3.07 £0.40 TSBN 5.12 +0.50 4.85+1.26
TSBN 100 1 9.48 +0.38 HMSBN 10.77 £ 1.15 7.39 +0.47
RTRBM 3750 1 3.88 £0.33 SS-SRTRBM 8.13 £ 0.06 5.88 £ 0.05
SRTRBM?® 3750 1 3.31 +£0.33 G-RTRBM?® 14.41 £ 0.38 10.91 £0.27

that by using a high-order TSBN, more information about the past is conveyed. We also examine
the advantage of employing deep models. Using stochastic, or deterministic hidden layer improves
performances. More results, including log-likelihoods, are provided in Supplementary Section D.

5.2 Motion capture dataset

In this experiment, we used the CMU motion capture dataset, that consists of measured joint angles
for different motion types. We used the 33 running and walking sequences of subject 35 (23 walking
sequences and 10 running sequences). We followed the preprocessing procedure of [[11]], after which
we were left with 58 joint angles. We partitioned the 33 sequences into training and testing set: the
first of which had 31 sequences, and the second had 2 sequences (one walking and another running).
We averaged the prediction error over 100 trials, as reported in Table[2] The TSBN we implemented
is of size 100 in each hidden layer and order 1. It can be seen that the TSBN-based models improves
over the Gaussian (G-)RTRBM and the spike-slab (SS-)SRTRBM significantly.

Figure 3: Motion trajectories generated from the HMSBN trained on the motion capture dataset.
(Left) Walking. (Middle) Running-running-walking. (Right) Running-walking.

Another popular motion capture dataset is the MIT dataseﬂ To further demonstrate the directed,
generative nature of our model, we give our trained HMSBN model different initializations, and
show generated, synthetic data and the transitions between different motion styles in Figure[3] These
generated data are readily produced from the model and demonstrate realistic behavior. The smooth
trajectories are walking movements, while the vibrating ones are running. Corresponding video files
(AV]) are provided as mocap 1, 2 and 3 in the Supplementary Material.

5.3 Polyphonic music dataset

The third experiment is based on four different polyphonic music sequences of piano [10], i.e.,
Piano-midi.de (Piano), Nottingham (Nott), MuseData (Muse) and JSB chorales (JSB). Each of these
datasets are represented as a collection of 88-dimensional binary sequences, that span the whole
range of piano from AQ to C8.

The samples generated from the trained HMSBN model are shown in Figure 2] (Middle). As can
be seen, different styles of polyphonic music are synthesized. The corresponding MIDI files are
provided as music 1 and 2 in the Supplementary Material. Our model has the ability to learn basic
harmony rules and local temporal coherence. However, long-term structure and musical melody
remain elusive. The variational lower bound, along with the estimated log-likelihood in [10], are
presented in Table [3] The TSBN we implemented is of size 100 and order 1. Empirically, adding
layers did not improve performance on this dataset, hence no such results are reported. The results
of RNN-NADE and RTRBM [10] were obtained by only 100 runs of the annealed importance sam-
pling, which has the potential to overestimate the true log-likelihood. Our variational lower bound
provides a more conservative estimate. Though, our performance is still better than that of RNN.

2Quantitative results on the MIT dataset are provided in Supplementary Section D.

Table 3: Test log-likelihood for the polyphonic ~ Table 4: Average prediction precision for STU.

music dataset. (¢) taken from [10]. (o) taken from [31].
MODEL PiANO. NOTT. MUSE. JSB. MODEL DiM MP PP
TSBN -7.98 -3.67 -6.81 -7.48 HMSBN 25 0.327 £0.002 0.353 £0.070
RNN-NADE -7.05 -2.31 -5.60 -5.56 DHMSBN-s 25-25 0.299 £0.001 0.378 £ 0.006
RTRBM?® -7.36 -2.62 -6.35 -6.35 GP-DPFA ° 100 0.223 £0.001 0.189 £ 0.003
RNN°® -8.37 -4.46 -8.13 -8.71 DRFM?® 25 0.217 £ 0.003 0.177 £ 0.010

5.4 State of the Union dataset

The State of the Union (STU) dataset contains the transcripts of 7' = 225 US State of the Union ad-
dresses, from 1790 to 2014. Two tasks are considered, i.e., prediction and dynamic topic modeling.

Prediction The prediction task is concerned with estimating the held-out words. We employ the
setup in [31]. After removing stop words and terms that occur fewer than 7 times in one document or
less than 20 times overall, there are 2375 unique words. The entire data of the last year is held-out.
For the documents in the previous years, we randomly partition the words of each document into
80%/20% split. The model is trained on the 80% portion, and the remaining 20% held-out words
are used to test the prediction at each year. The words in both held-out sets are ranked according to
the probability estimated from (6).

To evaluate the prediction performance, we calculate the precision @top-M as in [31]], which is given
by the fraction of the top-M words, predicted by the model, that matches the true ranking of the word
counts. M = 50 is used. Two recent works are compared, GP-DPFA [31] and DRFM [30]. The
results are summarized in Table @ Our model is of order 1. The column MP denotes the mean
precision over all the years that appear in the training set. The column PP denotes the predictive
precision for the final year. Our model achieves significant improvements in both scenarios.

Dynamic Topic Modeling The setup described in [30] is employed, and the number of topics is
200. To understand the temporal dynamic per topic, three topics are selected and the normalized
probability that a topic appears at each year are shown in Figure [2| (Right). Their associated top 6
words per topic are shown in Table 5] The learned trajectory exhibits different temporal patterns
across the topics. Clearly, we can identify jumps associated with some key historical events. For
instance, for Topic 29, we observe a positive jump in 1986 related to military and paramilitary
activities in and against Nicaragua brought by the U.S. Topic 30 is related with war, where the War
of 1812, World War II and Iraq War all spike up in their corresponding years. In Topic 130, we
observe consistent positive jumps from 1890 to 1920, when the American revolution was taking
place. Three other interesting topics are also shown in Table [5] Topic 64 appears to be related to
education, Topic 70 is about Iraq, and Topic 74 is Axis and World War II. We note that the words
for these topics are explicitly related to these matters.

Table 5: Top 6 most probable words associated with the STU topics.
Topic #29 Topic #30 Topic #130 Topic #64 Topic #70 Topic #74

family officer government generations Iraqi Philippines
budget civilized country generation Qaida islands
Nicaragua warfare public recognize Iraq axis
free enemy law brave Iraqis Nazis
future whilst present crime Al Japanese
freedom gained citizens race Saddam Germans

6 Conclusion

We have presented the Deep Temporal Sigmoid Belief Networks, an extension of SBN, that mod-
els the temporal dependencies in high-dimensional sequences. To allow for scalable inference and
learning, an efficient variational optimization algorithm is developed. Experimental results on sev-
eral datasets show that the proposed approach obtains superior predictive performance, and synthe-
sizes interesting sequences.

In this work, we have investigated the modeling of different types of data individually. One interest-
ing future work is to combine them into a unified framework for dynamic multi-modality learning.
Furthermore, we can use high-order optimization methods to speed up inference [32].

Acknowledgements This research was supported in part by ARO, DARPA, DOE, NGA and ONR.

References

(1]
(2]

(3]
(4]

(5]

(6]
(7]

(8]
(9]
(10]
(1]

(12]
(13]
[14]

[15]

(16]
(17]

(18]

[19]
(20]

[21]

(22]
(23]

[24]

[25]
[26]

[27]
(28]

[29]

(30]
[31]

(32]

L. Rabiner and B. Juang. An introduction to hidden markov models. In ASSP Magazine, IEEE, 1986.

R. Kalman. Mathematical description of linear dynamical systems. In J. the Society for Industrial &
Applied Mathematics, Series A: Control, 1963.

M. Hermans and B. Schrauwen. Training and analysing deep recurrent neural networks. In NIPS, 2013.

J. Martens and I. Sutskever. Learning recurrent neural networks with hessian-free optimization. In /ICML,
2011.

R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent neural networks. In /ICML,
2013.

A. Graves. Generating sequences with recurrent neural networks. In arXiv:1308.0850, 2013.

G. Taylor, G. Hinton, and S. Roweis. Modeling human motion using binary latent variables. In NIPS,
2006.

L. Sutskever and G. Hinton. Learning multilevel distributed representations for high-dimensional se-
quences. In AISTATS, 2007.

I. Sutskever, G. Hinton, and G. Taylor. The recurrent temporal restricted boltzmann machine. In NIPS,
2009.

N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent. Modeling temporal dependencies in high-
dimensional sequences: Application to polyphonic music generation and transcription. In ICML, 2012.

R. Mittelman, B. Kuipers, S. Savarese, and H. Lee. Structured recurrent temporal restricted boltzmann
machines. In ICML, 2014.

D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In /CLR, 2014.
A. Mnih and K. Gregor. Neural variational inference and learning in belief networks. In ICML, 2014.

D. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference in
deep generative models. In /ICML, 2014.

Z. Gan, R. Henao, D. Carlson, and L. Carin. Learning deep sigmoid belief networks with data augmenta-
tion. In AISTATS, 2015.

R. Neal. Connectionist learning of belief networks. In Artificial intelligence, 1992.

G. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep belief nets. In Neural computation,
2006.

G. Hinton. Training products of experts by minimizing contrastive divergence. In Neural computation,
2002.

G. Hinton and R. Salakhutdinov. Replicated softmax: an undirected topic model. In NIPS, 2009.

G. Hinton, P. Dayan, B. Frey, and R. Neal. The “wake-sleep” algorithm for unsupervised neural networks.
In Science, 1995.

T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent
magnitude. In COURSERA: Neural Networks for Machine Learning, 2012.

P. Werbos. Backpropagation through time: what it does and how to do it. In Proc. of the IEEE, 1990.

G. Taylor and G. Hinton. Factored conditional restricted boltzmann machines for modeling motion style.
In ICML, 2009.

Z. Gan, C. Chen, R. Henao, D. Carlson, and L. Carin. Scalable deep poisson factor analysis for topic
modeling. In ICML, 2015.

J. Henderson and I. Titov. Incremental sigmoid belief networks for grammar learning. In JMLR, 2010.

G. Hinton, P. Dayan, A. To, and R. Neal. The helmholtz machine through time. In Proc. of the ICANN,
1995.

J. Bayer and C. Osendorfer. Learning stochastic recurrent networks. In arXiv:1411.7610, 2014.

O. Fabius, J. R. van Amersfoort, and D. P. Kingma. Variational recurrent auto-encoders. In
arXiv:1412.6581, 2014.

J. Chung, K. Kastner, L. Dinh, K. Goel, A. Courville, and Y. Bengio. A recurrent latent variable model
for sequential data. In NIPS, 2015.

S. Han, L. Du, E. Salazar, and L. Carin. Dynamic rank factor model for text streams. In NIPS, 2014.

A. Acharya, J. Ghosh, and M. Zhou. Nonparametric Bayesian factor analysis for dynamic count matrices.
In AISTATS, 2015.

K. Fan, Z. Wang, J. Kwok, and K. Heller. Fast Second-Order Stochastic Backpropagation for Variational
Inference. In NIPS, 2015.

